首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dirk Selmar 《Planta》1993,191(2):191-199
The 14C-labelled cyanogenic glucosides linustatin (diglucoside of acetone cyanohydrin) and linamarin (monoglucoside of acetone cyanohydrin), prepared by feeding [14C]valine to plants of Linum usitatissimum L., were applied to cotyledons of Hevea brasiliensis Muell.-Arg. in order to study their transport. Both [14C]-linustatin and [14C]linamarin were efficiently taken up by the cotyledons. Whereas 14C was recovered completely when [14C]linustatin was applied to the seedling, only about one-half of the radioactivity fed as [14C]linamarin could be accounted for after incubation. This observation is in agreement with the finding that apoplasmic linamarase hydrolyzes linamarin but not the related diglucoside linustatin. These data prove that, in vivo, linamarin does not occur apoplasmically and that linustatin, which is exuded from the endosperm, is taken up by the cotyledons very efficiently. Thus, these findings confirm the linustatin pathway (Selmar et al. 1988, Plant Physiol. 86, 711–716), which describes mobilization and transport of the cyanogenic glucoside linamarin, initiated by the glucosylation of linamarin to yield linustatin. When linustatin is metabolized to non-cyanogenic compounds, in Hevea this cyanogenic diglucoside is hydrolyzed by a diglucosidase which splits off both glucose molecules simultaneously as one gentiobiose moiety (Selmar et al. 1988). In contrast, [14C]linustatin, which is taken up by the cotyledon, is not metabolized but is reconverted in high amounts to the monoglucosidic [14C]linamarin, which then is temporarily stored in the cotyledons. These data demonstrate that in Hevea, besides the simultaneous diglucosidase, there must be present a further diglucosidase which is able to hydrolyze cyanogenic diglucosides sequentially by splitting off only the terminal glucose moiety from linustatin to yield linamarin. From this, it is deduced that the metabolic fate of linustatin, which is transported into the source tissues, depends on the activities of the different diglucosidases. Whereas sequential cleavage — producing linamarin — is purely a part of the process of linamarin translocation (using linustatin as the transport vehicle), simultaneous cleavage, producing acetone cyanohydrin, is part of the process of linamarin metabolization in which the nitrogen from cyanogenic glucosides is used to synthesize non-cyanogenic compounds.  相似文献   

2.
Partial degradations of (+)-isothujone biosynthesised in Tanacetum vulgare after feeding IPP-[4-14C], DMAPP-[4-14C] or 3,3-dimethylacrylate-[Me-14C], and of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium respectively after uptake of 3,3-dimethylacrylate-[Me-14C], indicated that none of these metabolites was a direct source of the part of the monoterpene skeleton derived hypothetically from DMAPP. Uptake of glucose-[U14C] into P. graveolens led, in contrast, to both IPP and DMAPP-derived moieties of geraniol being extensively labelled. Feeding of l-valine-[U-14C] and l-leucine-[U-14C] to all three plants resulted in negligible incorporation of tracer into monoterpenes. A soluble enzyme system prepared from foliage of T. vulgare that had been exposed to CO2-[14C] for 20 days converted isotopically-normal IPP into GPP with the DMAPP-derived portion containing essentially all (>98%) of the radioactivity present. These observations and those previously obtained from feeding experiments with other [14C]-labelled precursors on the same plant species are consistent with the occurrence of two metabolic pools of intermediates for monoterpene biosynthesis, one of which is probably protein-bonded.  相似文献   

3.
Proline [U-14C] was fed to shoots of intact Tagetes patula grown normally, on horizontal clinostats, or on vertical clinostats rotating at 15 rev/hr. After various periods the incorporation of 14C into salt-extractable material from the cell walls of stems, petioles, leaves and flowers was determined. The cell walls of the gravity-compensated plants (grown on horizontal clinostats) has the highest amount of salt-extractable radioactivity. A 2- to 9-fold increase was observed in comparison to either the normal or vertical clinostat plant controls. Some physico-chemical properties of the salt-extractable fraction suggest that it consists of highly charged, low MW entities, possibly short chain peptides. On acid hydrolysis this material yields radioactive aspartic acid, glutamic acid and proline. The presence of labelled hydroxyproline is suggested. After acid hydrolysis of the cell walls of leaves, it was found that ca 4 times the amount of 14C was incorporated in the hypogravity-grown plant compared to the controls. It appears likely that extensibility changes in tissues under simulated hypogravity required additional cell wall protein.  相似文献   

4.
Microsomal fractions from developing shoots of adult white clover plants (of genotype AcAc) and cotyledons of dark germinated clover seedlings can synthesize 2-hydroxy-2-methylpropanenitrile and 2-hydroxy-2-methylbutanenitrile, the aglycone precursors of the cyanogenic glucosides, linamarin and lotaustralin, from various precursors in the presence of NADPH. l-Valine, 2-methylpropanal oxime, and 2-methylpropanenitrile are converted to 2-hydroxy-2-methylpropanenitrile and are detected as cyanide and acetone. l-Isoleucine and 2-methylbutanal oxime are converted to 2-hydroxy-2-methylbutanenitrile and are detected as cyanide and 2-butanone. At least two steps in these conversions are missing in microsomes from plants of genotype acac.  相似文献   

5.
《Phytochemistry》1986,25(10):2299-2302
Experiments in which unlabelled and [aglycone 14C-labelled cyanogenic glycosides, linamarin and lotaustralin, were fed to larvae of the moth Zygaena trifolii on leaves of an acyanogenic strain of their food plant, Lotus corniculatus, showed that the larvae retained about 20–45% of the glucosides consumed. The larvae in nature usually feed on plants of L. corniculatus which themselves contain linamarin and lotaustralin. Earlier experiments had shown that the larvae of Zygaena spp. are able to synthesize these glucosides from valine and isoleucine and so both sequestration and biosynthesis of the same compounds can occur. This is the only such occurrence yet known in the relationships between plants and insects.  相似文献   

6.
A procedure is described for the isolation from the phototrophic procaryole Anacystis nidulans of [U-14C]-labelled glycogen, with high specific radioactivity,formed when NaH14CO3 was added to non-dividing cells that continued to photoassimilate CO2. [U-14C]-Labelled glycogen was then treated with isoamylase (EC 3.2.1.68), isoamylase plus beta-amylase (EC 3.2.1.2), or glucoamylase (EC 3.2.1.3) to give [U-14C]-labelled maltosaccharides, maltose-U-14C, or d-glucose-U-14C, respectively.  相似文献   

7.
Roots of Vitis vinifera L., were treated with benzyladenine when the plant shoots were 38 cm long. Seventy-two hours after benzyladenine treatment, apical or basal leaves on separate shoots were exposed to 14CO2. Control shoots received 14CO2 but no benzyladenine. Application of benzyladenine directed 14C-photosynthate to roots, but a small amount of radioactivity was detected in the shoot tip when 14CO2 was administered to an apical leaf. Distribution of radioactivity among the sugar, organic acid, and amino acid fractions was altered by benzyladenine treatment. In all parts of plants with roots treated with benzyladenine and apical leaf fed 14CO2, the percentage of the total label in the sugar fraction comprised of fructose was generally more than twice that in control plants.  相似文献   

8.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

9.
Datura innoxia plants were wick fed with (±)-2-methylbutyric acid-[1-14C] and harvested after 7 days. The root alkaloids 3α,6β-ditigloyloxytropane and 3α,6β-ditigloyloxytropan-7β-ol were isolated and degraded. In each case the radioactivity was located in the ester carbonyl group indicating that this acid is an intermediate in the biosynthesis of tiglic acid from l-isoleucine. On the other hand, (±)-2-hydroxy-2-methylbutyric acid-[1-14C], which was fed to hydroponic cultures of Datura innoxia alongside isoleucine[U-14C] positive control plants, is not an intermediate.  相似文献   

10.
An enzyme present in extracts of the shoots of barley seedlings has been shown to synthesize coumarylagmatine from p-coumaryl-coenzyme A and [U-14C]agmatine.  相似文献   

11.
The lipids of Caldariella acidophila, an extreme thermophile member of the new archaebacteria group, are macrocyclic tetraethers. They are made up of two glycerol molecules (or one glycerol and one nonitol) bridged through ether linkages by two C4016,16′-biphytanyl chains. To elucidate the biosynthesis of the glycerol moiety of these tetraethers and the mechanism of glycerol ether assembly, labelled [U-14C, 1(3)-3H]glycerol and [U-14C, 2-3H]glycerol, were fed to C. acidophila. Both precursors were selectively incorporated with high efficiency, and without any change in the 3H/14C ratio, in the glycerol moiety of tetraethers. These results suggest that the ether forming step in the biosynthesis of tetraether lipids of C. acidophila, occurs without any loss of hydrogen from any of the glycerol carbons which in turn could be directly alkylated by geranylgeranyl pyrophosphate. The incorporation of radioactivity in the isoprenoid chains and into nonitol is also analysed.  相似文献   

12.
Five-month-old Datura meteloides plants were fed via the roots with 3-hydroxy-2-methylbutanoic acid-[1-14C] and isoleucine-[U-14C] as a positive control. After 5 days the plants were collected and in each case the root alkaloids 3α,6β-ditigloyloxytropane, 3α,6β-ditigloyloxytropan-7β-ol, meteloidine, hyoscine and hyoscyamine were isolated. Whereas isoleucine served as a precursor for the tiglic acid moieties 3-hydroxy-2-methylbutanoic acid did not.  相似文献   

13.
Sugar and organic Acid constituents in white clover   总被引:3,自引:3,他引:0       下载免费PDF全文
Davis LC  Nordin P 《Plant physiology》1983,72(4):1051-1055
Major ethanol-soluble carbohydrate and organic acid constituents of white clover (Trifolium repens) have been identified by use of high-performance liquid chromatography and gas chromatography. In leaves, petioles, roots, and nodules, pinitol (3-O-methyl chiro-inositol) is the predominant sugar, with sucrose present in lower concentration. In leaves and petioles there are significant levels of α- and β-methyl glucosides, linamarin, glucose, and fructose. In the nodules glucose is rarely present at detectable levels. The concentration of pinitol is generally greater than 25 millimolar in each tissue examined whereas the level of sucrose varies depending on the time of day. Sucrose is the major sugar significantly labeled during 1 hour administration of 14CO2 and accounts for more than 99% of all the radioactivity detected in the nodules at early times. Between 3 and 7 hours after labeling, 6% of the radioactivity is found in the organic acids fraction and 5% in the basic fraction of nodules. Malonic acid does not appear to be present in unusually high concentrations in either leaves or nodules of white clover.  相似文献   

14.
1. The testis of the ram secretes considerable amounts of amino acids (200μmoles/day) into the fluid collected from the efferent ducts. The principal amino acid in this testicular fluid is glutamate, which is present in concentrations about eight times those in testicular lymph or in blood from the internal spermatic vein. 2. The concentration of glutamate in seminal plasma from the tail of the epididymis is about ten times that in testicular fluid, and, though glutamate is the major amino acid in ejaculated seminal plasma, its concentration is less than in epididymal plasma. 3. After the intravenous infusion of [U-14C]glucose, labelled glutamate was found in the testicular fluid. Radioactivity was also detected in alanine, glycine, serine plus glutamine and aspartate. Alanine had the highest specific activity, about 50% of the specific activity of blood glucose. 4. When [U-14C]glutamate was infused, the specific activity of glutamate in testicular fluid was only about 2% that in the blood plasma. 5. Testicular and ejaculated ram spermatozoa oxidized both [U-14C]glutamate and [U-14C]leucine to a small extent, but neither substrate altered the respiration from endogenous levels. 6. No radioactivity was detected in testicular spermatozoal protein after incubation with [U-14C]glutamate or [U-14C]leucine. Small amounts of radioactivity were detected in protein from ejaculated ram spermatozoa after incubation with [U-14C]glutamate. 7. The carbon of [U-14C]glucose was incorporated into amino acids by testicular spermatozoa; most of the radioactivity occurred in glutamate.  相似文献   

15.
Biosynthesis of securinine was studied by incorporation experiments in Securinega suffruticosa. Among presumed precursors tested, lysine, cadaverine, and tyrosine showed the highest incorporation into securinine. Degradation experiments revealed that cadaverine-[1,5-14C] labelled specifically the piperidine ring of securinine and the radioactivity from dl-tyrosine-[2-14C] was introduced into the C-11 lactone carbonyl. Experiments with L-tyrosine-[U-14C] and L-tyrosine-[3′,5′-3H; U-14C] prove that the remaining C6Sz.sbnd;C2 moiety is derived from the aromatic ring and the C-2 and C-3 or tyrosine.  相似文献   

16.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

17.
Pulse-labeling experiments of white lupin (Lupinus albus L.) cell cultures with [U-14C]l-phenylalanine for 72 h resulted in the incorporation of the radioactivity into the isoflavone aglucones, glucosides, and prenylated derivatives. Both the aglucones genistein and 2′-hydroxygenistein and their 7-O-glucosides accounted for 85% of the total isoflavonoids identified in the cultured cells and contained 35% of the radioactivity, whereas the prenylated derivatives comprised 15 and 65%, respectively. Almost 20% of the labeled isoflavones of the cellular pool was recovered from the culture medium, 90% of which were monoprenylated and diprenylated derivatives containing 80% of the radioactivity. These results clearly demonstrate the release into the culture medium of a substantial amount of the endogenously synthesized isoflavonoids, especially the prenylated derivatives.  相似文献   

18.
Protoplast isolation from endosperms of developing carob (Ceratonia siliqua L.) seeds is reported for the first time. These protoplasts regenerated cell walls within 12 h. In order to assess their potential for galactomannan biosynthesis, the incorporation of radioactivity in the regenerated cell wall polysaccharides (CWP) and extracellular polysaccharides (ECP), after feeding these protoplasts with D-[U-14C]glucose or D-[U-14C]mannose was studied. The pattern of the radioactive label distribution in the neutral sugars of the trifluoroacetic acid (TFA) hydrolysate of CWP was different from that of the ECP. In the TFA hydrolysis products of the CWP, immediately after protoplast isolation, the greatest level of radioactivity (approximately 90%) was detected in glucose, galactose and mannose. After 2 days protoplast culture, the label in mannose increased. In contrast, immediately after protoplast isolation, approximately 90% of radioactivity of the ECP was detected in galactose and mannose. However, during culture, the radioactivity incorporation in mannose dropped to one third, while that in galactose and arabinose increased significantly. Hydrolysis of the CWP and ECP with -galactosidase and endo--mannanase confirmed that, at least part of mannose and galactose belonged to galactomannan molecules. These results were compared with those obtained upon feeding developing endosperm tissue with D-[U-14C]mannose. From our results we concluded that protoplasts from endosperm tissues of developing carob seeds, retained the ability of their original explant to synthesize galactomannan, making protoplasts candidates for the study of galactomannan biosynthesis.  相似文献   

19.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase.  相似文献   

20.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号