首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrotrophy, the provisioning of embryos between fertilization and birth, creates the potential for conflict between mothers and embryos over the level of maternal investment. This conflict is predicted to drive the evolution of reproductive isolation between populations with different mating systems. In this study, we examine whether density‐driven mating system differences explain the patterns of asymmetric reproductive isolation observed in previous studies involving four populations of the matrotrophic least killifish, Heterandria formosa. Minimum sire number reconstructions suggested that two populations characterized by low densities had lower levels of concurrent multiple paternity than two populations characterized by high densities. However, low levels of genetic variation in the low‐density populations greatly reduced our probability of detecting multiple mating in them. Once we took the lower level of genetic variation into account in our estimations, high levels of multiple paternity appeared the rule in all four populations. In the population where we had the greatest power of detecting multiple mating, we found that multiple paternity in H. formosa typically involves multiple sires contributing to offspring within the same brood instead of different fathers contributing to distinct, simultaneously provisioned broods. Paternity was often skewed towards one sire. Our results suggest that differences between H. formosa populations in the levels of multiple paternity are not sufficient to explain the reproductive isolation seen in previous studies. We suggest that other influences on maternal–foetal conflict may contribute to the pattern of reproductive isolation observed previously. Alternatively, the asymmetric reproductive isolation seen in previous studies might reflect the disruption of maternal–foetal coadaptation.  相似文献   

2.
Under the Red Queen hypothesis, outcrossing can produce genetically variable progeny, which may be more resistant, on average, to locally adapted parasites. Mating with multiple partners may enhance this resistance by further increasing the genetic variation among offspring. We exposed Potamopyrgus antipodarum to the eggs of a sterilizing, trematode parasite and tested whether this altered mating behaviour. We found that exposure to parasites increased the number of snail mating pairs and the total number of different mating partners for both males and females. Thus, our results suggest that, in host populations under parasite-mediated selection, exposure to infective propagules increases the rate of mating and the number of mates.  相似文献   

3.
Parental care requires a large investment of time and energy. This can reduce future parental survival and opportunities for mating. Because males are usually more uncertain of their parentage with respect to the caring of offspring than are females, the reduction in reproductive success is thought to be greater in males. Therefore, males are under selection to ensure paternity of the offspring for which they care. Males can increase paternity before and after fertilization. Before fertilization, males can increase paternity by increasing their competitive ability for fertilization. After fertilization, males can increase paternity by cannibalizing unrelated offspring. Here, we investigated the stage at which male burying beetles, Nicrophorus quadripunctatus, increase their paternity by evaluating the number of offspring sired by a nursing male in asynchronously hatched broods in relation to hatching time. We found that nursing males assure a very high level of the paternity of hatching offspring. We also found that the paternity of non-nursing and nursing males remained constant across hatching time within a brood, indicating that it is unlikely that filial cannibalism plays a role in increasing the paternity of offspring. We concluded that ensuring paternity before fertilization is more important in increasing the paternity of offspring.  相似文献   

4.
The mating system of a species can have great effects on its genetic structure and evolution. We studied the extent of multiple paternity in a gastropod with internal fertilization, the intertidal snail Littorina saxatilis. Paternal genotype reconstruction based on microsatellite markers was performed on the offspring of wild, naturally fertilized females from 2 populations. The numbers of males contributing to the offspring per female were among the highest detected in invertebrates so far, with the exception of social insects. No reproductive skew in favor of males that were genetically more distant from the females was detected, and the pattern of fertilization appeared random. The result fits a hypothesis of indiscriminate mating, with genetic bet hedging as the most likely explanation. Bet hedging may have evolved as a form of inbreeding avoidance, if the snails are not able to recognize relatives. However, nutritional benefits from sperm or sexual conflict with males are additional possibilities that remain to be assessed in this species. Whatever the causes, such high levels of multiple paternity are remarkable and are likely to have a large impact on population structure and dynamics in a species in which migration between populations is spurious.  相似文献   

5.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

6.
Mating frequency has important implications for patterns of sexual selection and sexual conflict, and hence for issues such as the maintenance of genetic diversity and speciation. We assessed the level of multiple paternity and sperm utilization patterns in four natural populations of the simultaneous hermaphrodite land snail Arianta arbustorum using four polymorphic microsatellite loci. A total of 1088 offspring from 26 wild‐caught snails were genotyped to determine the number of fathers siring each brood and paternity skew in succeeding clutches. Multiple paternity was detected in the offspring of all 26 mother snails examined with the contribution of two to six fathers. The four populations examined differed in the level of multiple paternity. Snails in the population with the highest density of adults showed the highest level of multiple paternity, whereas snails in the population with the lowest density exhibited the lowest value of multiple paternity. Highly skewed paternity patterns were found in the progeny of 15 (57.7%) of the 26 mother snails. The number and identity of fathers siring the offspring of single mothers also varied among successive clutches. Furthermore, genetic analyses indicate a low level of self‐fertilization in one of the four populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 350–361.  相似文献   

7.
Multiple male mating (MMM) causes sperm competition, which may play an important role in the evolution of reproductive traits. The frequency of multiple paternity (MP), where multiple males sire offspring within a single litter, has been used as an index of MMM frequency. However, MP frequency is necessarily lower than MMM frequency. The magnitude of the difference between MMM and MP frequency depends on litter size (LS) and fertilization probability skew (FPS), and this difference may be meaningfully large in animals with small LSs. In this study, we propose a method to estimate MMM frequency using an individual‐based model with three variables (MP frequency, LS and FPS). We incorporated observed paternity skew data to infer a possible range of FPS that cannot be measured in free‐living populations and tested the validity of our method using a data set from a grey‐sided vole (Myodes rufocanus) population and from hypothetical populations. MP was found in 50 out of 215 litters (23.3%) in the grey‐sided vole population, while MMM frequency was estimated in 67 of 215 litters (31.2%), with a certainty range of 59–88 (27.4%–40.9%). The point estimation of MMM frequency was realized, and the certainty range was limited within the practical range. The use of observed paternity skew was very effective at narrowing the certainty range of the estimate. Our method could contribute to a deeper understanding of the ecology of MMM in free‐living populations.  相似文献   

8.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

9.
In group‐living species with male dominance hierarchies where receptive periods of females do not overlap, high male reproductive skew would be predicted. However, the existence of female multiple mating and alternative male mating strategies can call into question single‐male monopolization of paternity in groups. Ring‐tailed lemurs (Lemur catta) are seasonally breeding primates that live in multi‐male, multi‐female groups. Although established groups show male dominance hierarchies, male dominance relationships can break down during mating periods. In addition, females are the dominant sex and mate with multiple males during estrus, including group residents, and extra‐group males—posing the question of whether there is high or low male paternity skew in groups. In this study, we analyzed paternity in a population of wild L. catta from the Bezà Mahafaly Special Reserve in southwestern Madagascar. Paternity was determined with 80–95% confidence for 39 offspring born to nine different groups. We calculated male reproductive skew indices for six groups, and our results showed a range of values corresponding to both high and low reproductive skew. Between 21% and 33% of offspring (3 of 14 or three of nine, counting paternity assignments at the 80% or 95% confidence levels, respectively) were sired by extra‐troop males. Males siring offspring within the same group during the same year appear to be unrelated. Our study provides evidence of varying male reproductive skew in different L. catta groups. A single male may monopolize paternity across one or more years, while in other groups, >1 male can sire offspring within the same group, even within a single year. Extra‐group mating is a viable strategy that can result in extra‐group paternity for L. catta males.  相似文献   

10.
The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra‐pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within‐pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra‐pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade‐off between male within‐pair paternity success and extra‐pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection.  相似文献   

11.
Although classically thought to be rare, female polyandry is widespread and may entail significant fitness benefits. If females store sperm over extended periods of time, the consequences of polyandry will depend on the pattern of sperm storage, and some of the potential benefits of polyandry can only be realized if sperm from different males is mixed. Our study aimed to determine patterns and consequences of polyandry in an amphibian species, the fire salamander, under fully natural conditions. Fire salamanders are ideal study objects, because mating, fertilization and larval deposition are temporally decoupled, females store sperm for several months, and larvae are deposited in the order of fertilization. Based on 18 microsatellite loci, we conducted paternity analysis of 24 female‐offspring arrays with, in total, over 600 larvae fertilized under complete natural conditions. More than one‐third of females were polyandrous and up to four males were found as sires. Our data clearly show that sperm from multiple males is mixed in the female's spermatheca. Nevertheless, paternity is biased, and the most successful male sires on average 70% of the larvae, suggesting a ‘topping off’ mechanism with first‐male precedence. Female reproductive success increased with the number of sires, most probably because multiple mating ensured high fertilization success. In contrast, offspring number was unaffected by female condition and genetic characteristics, but surprisingly, it increased with the degree of genetic relatedness between females and their sires. Sires of polyandrous females tended to be genetically similar to each other, indicating a role for active female choice.  相似文献   

12.
Understanding how some species may be able to evolve quickly enough to deal with anthropogenic pressure is of prime interest in evolutionary biology, conservation, and management. Wild boar (Sus scrofa scrofa) populations keep growing all over Europe despite increasing hunting pressure. In wild boar populations subject to male‐selective harvesting, the initially described polygynous mating system may switch to a promiscuous/polyandrous one. Such a change in the mating system, where potentially more males sire a litter at one reproductive event, may be associated with the retention of high genetic diversity and an increase of litter size. We tested these hypotheses by estimating the number of sires per litter based on a six‐year long monitoring of a wild boar population subject to particularly high harvesting pressure. Our results show a high and stable genetic diversity and high rates of multiple paternity compared to other populations, thus depicting a promiscuous/polyandrous mating system in this population. We also show that litter size is positively linked to the number of sires, suggesting that multiple paternity increases fecundity. We finally discuss that multiple paternity may be one of the factors allowing rapid evolution of this population by maintaining both genetic and phenotypic diversity.  相似文献   

13.
Multiple paternity occurs in most species and animal groups that have been studied. Because mating involves fitness costs to individual females, theory predicts that polyandrous females gain greater fitness benefits than costs, allowing the behavior to be maintained. Genetic, rather than material, benefits often occur in species where males provide females with little more than sperm and seminal fluid. We compared fitness correlates of single‐ and double‐sire clutches from female marbled salamanders (Ambystoma opacum) at the egg, hatchling, and metamorph stages of offspring development. Because clutches were collected from experimental breeding groups, strict paternity exclusion of offspring using microsatellite data allowed us to categorize each clutch as having either one or two fathers. Early offspring viability and size of hatchlings were not different between single‐ and multiple‐paternity clutches. Larvae from the two clutch types were allowed to develop together in field enclosures until metamorphosis. Although there was no difference in size at metamorphosis, survival to metamorphosis was significantly higher in multiple‐paternity clutches (44% vs. 40%) suggesting a benefit for females. The results were consistent with genetic benefits, although maternal effects could not be ruled out. The data did not support predictions of the genetic bet‐hedging and good sperm hypotheses for genetic benefits of polyandry.  相似文献   

14.
After choosing a first mate, polyandrous females have access to a range of opportunities to bias paternity, such as repeating matings with the preferred male, facilitating fertilization from the best sperm or differentially investing in offspring according to their sire. Female ability to bias paternity after a first mating has been demonstrated in a few species, but unambiguous evidence remains limited by the access to complex behaviours, sperm storage organs and fertilization processes within females. Even when found at the phenotypic level, the potential evolution of any mechanism allowing females to bias paternity other than mate choice remains little explored. Using a large population of pedigreed females, we developed a simple test to determine whether there is additive genetic variation in female ability to bias paternity after a first, chosen, mating. We applied this method in the highly polyandrous Drosophila serrata, giving females the opportunity to successively mate with two males ad libitum. We found that despite high levels of polyandry (females mated more than once per day), the first mate choice was a significant predictor of male total reproductive success. Importantly, there was no detectable genetic variance in female ability to bias paternity beyond mate choice. Therefore, whether or not females can bias paternity before or after copulation, their role on the evolution of sexual male traits is likely to be limited to their first mate choice in D. serrata.  相似文献   

15.
Johnson SL  Yund PO 《Molecular ecology》2007,16(15):3253-3262
For free-spawning marine invertebrates, fertilization processes control the genetic diversity of offspring. Each egg can potentially be fertilized by a sperm from a different male, and hence genetic diversity within a brood varies with levels of multiple paternity. Yet, few studies have characterized the frequency of multiple paternity in natural spawns. We analysed patterns of multiple paternity in two populations of the colonial ascidian Botryllus schlosseri using microsatellites. Because previous studies have shown that at moderate to high population densities, competition among male-phase B. schlosseri colonies results in the nearest male dominating the paternity of a brood, we specifically tested the effect of population density on patterns of paternity. Paternity was estimated using three multilocus indices: minimum number of fathers, counts of sperm haplotypes, and effective paternity (K(E)). Multiple paternity was evident in more than 92% of the broods analysed, but highly variable, with a few broods displaying unequal contributions of different males. We found no effect of population density on multiple paternity, suggesting that other factors may control paternity levels. Indirect benefits from increasing the genetic diversity of broods are a possible explanation for the high level of multiple paternity in this species.  相似文献   

16.
The ability of sexually mature non‐territorial floaters to sire offspring affects the success of floating as a breeding strategy. Red‐winged Blackbirds (Agelaius phoeniceus) have second‐year (SY) and after‐second‐year (ASY) floater males, and genetic studies suggest that floaters may gain paternity. Despite these studies, we still know little about the fitness costs and benefits of floating in this species. By presenting taxidermic models of females in soliciting, precopulatory postures in territories of experienced (previously attracted at least one mate in the study area) and inexperienced (did not previously defend a territory in the study area) males, I was able to examine the copulation behavior and success of floater male Red‐winged Blackbirds as well as the effect of experience for territorial males. Floaters trespassed during 66.1% of presentations and 85.4% of trespassers were SY males. Experienced territorial males (92.5%) and neighbors (87.5%) were most successful in attempts to copulate with models, inexperienced territorial males (62.5%) and ASY floaters (50.0%) had intermediate success, and SY floaters (6.9%) were least successful. Experienced territorial males were more likely to approach models than inexperienced males, and floaters were more likely to approach models in territories of experienced than inexperienced males. These results provide further evidence that floaters trespass frequently, suggest that floaters sire offspring, and demonstrate that prior breeding experience affects the behavior and reproductive success of territorial male Red‐winged Blackbirds. Floating appears to be a conditional strategy for ASY male Red‐winged Blackbirds, but, because it is still not known if SY floaters sire offspring, these males may be trespassing to gain information or experience.  相似文献   

17.
We report the discovery of intraspecific variation in both colony composition and patterns of paternity in two populations of the social common mole-rat Cryptomys hottentotus hottentotus. These two populations represent the mesic and arid habitat extremes of the species' broad ecological range in South Africa. Until recently colonies of the common mole-rat were thought to consist of familial groups whereby all colony members were the offspring of a monogamous reproductive pair. The remaining colony members were thought to forego reproduction until both social and ecological conditions favoured dispersal and opportunities for independent outbreeding. Results from genetic assignment tests using microsatellite markers indicate that while colony composition is dominated by familial groups, colonies within both populations included both adult and subadult foreign conspecifics. Analysis of parentage reveals that the social organization of C. h. hottentotus is not that of strict monogamy; paternity of offspring was not assigned consistently to the largest, most dominant male within the colony. Moreover, a number of significantly smaller males were found to sire offspring, suggesting a sneak-mating strategy by subordinate within-colony males. Extra-colony extra-pair paternity (ECP) was also found to characterize C. h. hottentotus colonies, occurring with similar frequencies in both habitats. Both dominant established breeding males and subordinate males were identified as siring young in nonsource colonies. Furthermore, established breeding males were found to sire extra-colony young in the same season as siring young within their source colonies. We discuss the significance of these results within the context of the divergent ecological regimes characterizing the two sites and observe that our results revisit the accuracy of using behavioural and morphological characters, which have structured the basis of our understanding of the behavioural ecology of this species, as indicators of breeding status in mark-recapture studies.  相似文献   

18.
Genetic paternity testing can provide sire identity data for offspring when females have been exposed to multiple males. However, correct paternity assignment can be influenced by factors determined in the laboratory and by size and genetic composition of breeding groups. In the present study, DNA samples from 26 commingled beef bulls and their calves from the Nebraska Reference Herd-1 (NRH1), along with previously reported Illinois Reference/Resource Families data, were used to estimate the impact of sire number and sire relatedness on microsatellite-based paternity testing. Assay performance was measured by exclusion probabilities and probabilities of unambiguous parentage (PUP) were derived. Proportion of calves with unambiguous parentage (PCUP) was also calculated to provide a readily understandable whole-herd measure of unambiguous paternity assignment. For NRH1, theoretical and observed PCUP values were in close agreement (85.3 and 85.8%, respectively) indicating good predictive value. While the qualitative effects on PUP values of altering sire number and sire relatedness were generally predictable, we demonstrate that the impacts of these variables, and their interaction effects, can be large, are non-linear, and are quantitatively distinct for different combinations of sire number and degree of sire relatedness. In view of the potentially complex dynamics and practical consequences of these relationships in both research and animal production settings, we suggest that a priori estimation of the quantitative impact of a given set of interacting breeding group-specific and assay-specific parameters on PUP may be indicated, particularly when candidate sire pools are large, sire relatedness may be high, and/or loci numbers or heterozygosity values may be limiting.  相似文献   

19.
Multiple paternity is an important characteristic of the genetic mating system and common across a wide range of taxa. Multiple paternity can increase within‐population genotypic diversity, allowing selection to act on a wider spectre of genotypes, and potentially increasing effective population size. While the genetic mating system has been studied in many species with active mating behavior, little is known about multiple paternity in sessile species releasing gametes into the water. In freshwater mussels, males release sperm into the water, while eggs are retained and fertilized inside the female (spermcast mating). Mature parasitic glochidia are released into the water and attach to the gills of fish where they are encapsulated until settling in the bottom substrate. We used 15 microsatellite markers to detect multiple paternity in a wild population of the freshwater pearl mussel (Margaritifera margaritifera). We found multiple paternity in all clutches for which more than two offspring were genotyped, and numbers of sires were extremely high. Thirty‐two sires had contributed to the largest clutch (43 offspring sampled). This study provides the first evidence of multiple paternity in the freshwater pearl mussel, a species that has experienced dramatic declines across Europe. Previous studies on other species of freshwater mussels have detected much lower numbers of sires. Multiple paternity in freshwater pearl mussels may be central for maintaining genetic variability in small and fragmented populations and for their potential to recover after habitat restoration and may also be important in the evolutionary arms race with their fish host with a much shorter generation time.  相似文献   

20.
In many species, sperm velocity affects variation in the outcome of male competitive fertilization success. In fishes, ovarian fluid (OF) released with the eggs can increase male sperm velocity and potentially facilitate cryptic female choice for males of specific phenotypes and/or genotypes. Therefore, to investigate the effect of OF on fertilization success, we measured sperm velocity and conducted in vitro competitive fertilizations with paired Chinook salmon (Oncorhynchus tshawytscha) males representing two alternative reproductive tactics, jacks (small sneaker males) and hooknoses (large guarding males), in the presence of river water alone and OF mixed with river water. To determine the effect of genetic differences on fertilization success, we genotyped fish at neutral (microsatellites) and functional [major histocompatibility complex (MHC) II ß1] markers. We found that when sperm were competed in river water, jacks sired significantly more offspring than hooknoses; however, in OF, there was no difference in paternity between the tactics. Sperm velocity was significantly correlated with paternity success in river water, but not in ovarian fluid. Paternity success in OF, but not in river water alone, was correlated with genetic relatedness between male and female, where males that were less related to the female attained greater paternity. We found no relationship between MHC II ß1 divergence between mates and paternity success in water or OF. Our results indicate that OF can influence the outcome of sperm competition in Chinook salmon, where OF provides both male tactics with fertilization opportunities, which may in part explain what maintains both tactics in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号