首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
1. Anthropogenic effects have propelled us into what many have described as the sixth mass extinction, and amphibians are among the most affected groups. The causes of global amphibian population declines and extinctions are varied, complex and context‐dependent and may involve multiple stressors. However, experimental studies examining multiple factors contributing to amphibian population declines are rare. 2. Using outdoor mesocosms containing zooplankton, phytoplankton, periphyton and tadpoles, we conducted a 2 × 2 × 3 factorial experiment that examined the separate and combined effects of an insecticide and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three different assemblages of larval pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). 3. Larval amphibian growth and development were affected by carbaryl and the amphibian assemblage treatment, but only minimally by Bd. Carbaryl delayed metamorphosis in both amphibian species and increased the growth rate of P. regilla. Carbaryl also reduced cladoceran abundance, which, in turn, had positive effects on phytoplankton abundance but no effect on periphyton biomass. Substituting 20 intraspecific competitors with 20 interspecific competitors decreased the larval period but not the growth rate of P. regilla. In contrast, substituting 20 intraspecific competitors with 20 interspecific competitors had no effect on R. cascadae. Results of real‐time quantitative polymerase chain reaction (qPCR) analysis confirmed infection of Bd‐exposed animals, but exposure to Bd had no effects on either species in univariate analyses, although it had significant or nearly significant effects in several multivariate analyses. In short, we found no interactive effects among the treatments on amphibian growth and development. 4. We encourage future research on the interactive effects of pesticides and pathogens on amphibian communities.  相似文献   

2.
Many organisms use chemical cues from a variety of sources to mediate predator avoidance. Response to heterospecific alarm cues has been demonstrated for tadpoles within but not among taxa and alarm response behavior has seldom been examined under field conditions. This study examined the response of three sympatric amphibian larvae and predaceous larval Dytiscus sp. (diving beetle) to damage-release signals in natural ponds by using capture rates from treated funnel traps as an index of larval behavior. Hyla regilla (Pacific tree frog) tadpoles avoided traps treated with either crushed conspecifics or with Rana aurora (red-legged frog) tadpoles but the larger ranids and Ambystoma macrodactylum (long-toed salamander) did not respond to either treatment. H. regilla tadpoles were likely susceptible to any potential predators of ranid tadpoles in these ponds and this result is consistent with the hypothesis that a response to heterospecific alarm occurs in sympatric prey with shared predators.  相似文献   

3.
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.  相似文献   

4.
5.
1. Amphibians are in decline, and the disease chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has been repeatedly implicated throughout the world. This chytrid reproduces via an infectious, motile zoospore stage that remains viable for weeks in the water column. 2. Daphnia is a keystone zooplankton grazer in intact freshwater ecosystems, whose importance to amphibians may be overlooked. As an efficient grazer, Daphnia can suppress chytrid epidemics by consuming zoospores and may therefore play a role in Bd infection dynamics. Daphnia may also have important effects on tadpoles by mediating the properties of pond food webs. We tested the role of Daphnia in outdoor mesocosms containing the tadpoles of red‐legged frogs (Rana aurora) infected with Bd. We also tested the ability of Daphnia to filter Bd from the water column in laboratory microcosms. 3. In the water of microcosms, Daphnia dramatically decreased the number of Bd genomic equivalents detectable using quantitative PCR. Bd genomic equivalents fell below the limit of detection at very high (>1 Daphnia mL?1) Daphnia densities. 4. In mesocosms, Daphnia was critical to the development of tadpoles: in the presence of Daphnia, tadpoles were twofold heavier at metamorphosis than in their absence. Daphnia and Bd interacted to affect the tadpole survival: survival was highest in the presence of Daphnia and in the absence of Bd. We were unable to detect an effect of Daphnia on the transmission of Bd in mesocosms. However, Bd transmission among the tadpoles in mesocosms was unexpectedly low, limiting our power to detect an effect of Daphnia on transmission. 5. Tadpole dissection showed that tadpoles also consumed large numbers of Daphnia. Current models of mesocosm food webs that assume no predation by tadpoles on zooplankton therefore probably overlook important features of both natural and experimental systems.  相似文献   

6.
Nitrogen pollution as a result of agricultural runoff and atmospheric deposition is a major challenge to aquatic ecosystems, and is likely to increase in the future. Nitrogenous pollutants are potential stressors of amphibian larvae through their toxicological impacts on individuals; however, they may also increase primary productivity. We examined how such an anthropogenic stressor could influence the interactions between two potentially competing species of tadpoles (Rana clamitans and R. catesbeiana). In a 42 d mesocosm experiment, R. catesbeiana survival, but not final mass, was reduced by nitrate addition. Rana catesbeiana survival was lower when in competition with R. clamitans than when only experiencing intraspecific competition. For R. clamitans, survival was not affected by nitrate addition or competition type. Rana clamitans in nitrate addition mesocosms were heavier than tadpoles from no nitrate mesocosms, and were heavier in intraspecific than in interspecific mesocosms. Our results suggest that nitrate can influence the performance of amphibian larvae, and that its effects could have complex effects on aquatic ecosystems.  相似文献   

7.
As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species—especially pathogens—are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (<10 years) localized extirpation of a North American frog (Rana boylii) and that Bd remains widespread among extant amphibians in the region of extirpation. We used an interdisciplinary approach, combining interviews with herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.  相似文献   

8.
Introductions of non-native predators and competitors appear to contribute to worldwide amphibian declines; however, potential negative impacts of invasive plants on habitat quality and amphibian populations have not been examined. Loss of diversity and alterations in ecosystem function associated with plant invasions may disrupt food webs, potentially leading to further declines of already threatened amphibian populations. We used a combination of small bins, mesocosms, and field experiments to examine the impacts of Eurasian purple loosestrife (Lythrum salicaria) replacing native cattails (Typha latifolia) in North American freshwater wetlands on survival, developmental rate, and diet (freshwater algae) of American toad (Bufo americanus) tadpoles. Tadpoles developed slower in L. salicaria compared to tadpoles developing in T. latifolia. This effect was consistent across experimental venues, although mesocosms showed this effect only in the second year of our study. Survival and development rates were always more variable in purple loosestrife than in cattail. In bins, tadpoles showed significantly reduced survival when raised in purple loosestrife extract and addition of leaf litter exacerbated this negative effect. Tadpole survival rates in mesocosms and field cages were not significantly different between plant species, most likely an effect of high variability among replicates. We suspect a combination of direct toxicity of high tannin concentrations in L. salicaria leaves and their indirect negative impacts on aquatic food webs are responsible for these results. Tadpole gut analyses revealed differences in algal communities among venues and between L. salicaria and T. latifolia suggesting that alterations in tadpole food quality and quantity contribute to the observed reduced tadpole performance. The replacement of native wetland plant species by L. salicaria does not represent a simple exchange of ecological equivalents and the function of invaded habitats for native species has clearly changed. While we were investigating only a single amphibian species, our results suggest that the impact of L. salicaria on ecosystem processes and aquatic food webs may be more general and likely to negatively affect other wetland species. The threats non-indigenous plants represent for amphibian populations and food webs may be underestimated, and warrant further investigation.  相似文献   

9.
Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yavapaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.  相似文献   

10.
Wildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co‐occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co‐occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.  相似文献   

11.
The emerging infectious disease chytridiomycosis, caused by the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in widespread population declines, extirpations, and extinctions of amphibians throughout the world. In the Neotropics, most amphibian declines have occurred in cool mid‐ to high‐elevation sites (> 400 m asl), and it is hypothesized that high temperatures limit the growth of Bd in lowland tropical sites, despite few data available on the distribution of Bd in lowland forests. Here, we report the results of a 12‐mo pathogen surveillance program for three common species of frogs at a warm lowland site in northeastern Costa Rica. We combine standard non‐invasive skin swabbing techniques with a quantitative polymerase chain reaction assay to analyze the infection prevalence and Bd load across a 1‐yr period. Our data indicate an overall Bd infection rate of 6.1 percent, but prevalence varies from < 5 percent in warmer months to a peak of 34.7 percent in the coolest months of the year. Despite very little seasonal variation in temperature (< 4°C), our data indicate strong seasonal variation in the prevalence of Bd, with highest prevalence of infection in months with coolest air temperatures. While it has been suggested that Bd is primarily a riparian fungus, we find no difference in prevalence of infection among our species despite considerable differences in affiliation of these species with water. Our study provides further evidence that infection by Bd is regulated by temperature and shows that warm temperatures in lowland forests may restrict, but not prevent, infection by Bd.  相似文献   

12.
13.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused the decline and extinction of frogs, but the distribution of Bd is not completely known. This information is crucial to implementing appropriate quarantine strategies, preparing for outbreaks of chytridiomycosis due to introduction of Bd, and for directing conservation actions towards affected species. This survey protocol provides a simple and standard method for sampling all frog populations in Australia to maximise the chances of detecting Bd. In order to structure and prioritise the protocol, areas are divided by bioregion and frog species are allocated depending on the water bodies they utilize into 3 groups representing different levels of risk of exposure to Bd. Sixty individuals per population need to be tested to achieve 95% certainty of detecting 1 positive frog, based on the minimum apparent prevalence of > or =5% in infected Australian frog populations and using a quantitative real-time TaqMan PCR test. The appropriate season to sample varies among bioregions and will ideally incorporate temperatures favourable for chytridiomycosis (e.g. maximum air temperatures generally <27 degrees C). Opportunistic collection and testing of sick frogs and tadpoles with abnormal mouth-parts should also be done to increase the probability of detecting Bd. The survey priorities in order are (1) threatened species that may have been exposed to Bd, (2) bioregions surrounding infected bioregions/ecological groups, and (3) species of frogs of unknown infection status in infected bioregions. Within these priority groups, sampling should first target ecological groups and species likely to be exposed to Bd, such as those associated with permanent water, and areas within bioregions that have high risk for Bd as indicated by climatic modelling. This protocol can be adapted for use in other countries and a standard protocol will enable comparison among amphibian populations globally.  相似文献   

14.
Although the chytrid fungus Batrachochytrium dendrobatidis (Bd), the etiological agent of amphibian chytridiomycosis, has been implicated in mass mortality and population declines on several continents around the world, there have been no reports on the presence of Bd infections in amphibians in China. We employed quantitative PCR and histological techniques to investigate the presence of Bd in introduced North American bullfrogs (Rana catesbeiana) (referred to hereafter as bullfrog) and native amphibians in bullfrog-invaded areas of the Yunnan Province, China. A total of 259 samples at five wild sites were collected between June and September in 2007 and 2008, including bullfrogs and four native amphibian species (Rana pleuraden, Rana chaochiaoensis, Odorrana andersonii, and Bombina maxima). In addition, 37 samples of adult bullfrogs were obtained from a food market. Bd infections were discovered in bullfrogs and three native amphibian species from all of the surveyed sites. Of the 39 Bd-positive samples, 35 were from wild-caught bullfrog tadpoles, postmetamorphic bullfrogs, R. pleuraden, R. chaochiaoensis, and O. andersonii, and four were from adult bullfrogs from the market. Our results provide the first evidence of the presence of Bd in Chinese amphibians, suggesting that native amphibian diversity in China is at risk from Bd. There is an urgent need to monitor the distribution of Bd in amphibians in China and understand the susceptibility of native amphibian species to chytridiomycosis. Strict regulations on the transportation of bullfrogs and the breeding of bullfrogs in markets and farms should be drafted in order to stop the spread of Bd by bullfrogs.  相似文献   

15.
McMahon  Taegan A.  Rohr  Jason R. 《EcoHealth》2015,12(1):188-193
EcoHealth - The chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in worldwide amphibian declines. Bd has been shown to qualitatively transition from the mouthparts of tadpoles to...  相似文献   

16.
Chytridiomycosis is an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, which has been implicated in amphibian declines worldwide. The mountain yellow-legged frog Rana muscosa is a declining amphibian species that can be infected by B. dendrobatidis; however, transmission between conspecifics has not been documented. Here, we present experimental evidence that R. muscosa tadpoles can be infected by fungal zoospores and that they can transmit infection to each other and to postmetamorphic animals. We compared several techniques for detecting B. dendrobatidis transmission and found that histology with serial sectioning was able to detect infection before cytology or visual inspections. We also show that R. muscosa tadpoles appear healthy with B. dendrobatidis infection, while postmetamorphic animals experience mortality. In addition, we provide guidelines for visually detecting B. dendrobatidis in R. muscosa tadpoles, which may be useful in other affected species. Field surveys of infected and uninfected populations verify this identification technique.  相似文献   

17.
Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage (‘Bd‐GPL’). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd‐GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd‐GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd‐GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd‐GPL‐associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd‐GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd‐GPL and their associated amphibian hosts when assessing the spread and impact of Bd‐GPL on worldwide amphibian populations.  相似文献   

18.
19.
Exposure to ultraviolet-B radiation (UV-B; 280-320 nm) has a wide array of effects on aquatic organisms, including amphibians, and has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations. Both lethal and sublethal effects of UV-B exposure have been documented for many amphibian species at various life-history stages. Some species, such as red legged frogs, Rana aurora, appear to be resistant to current ambient levels of UV-B, at least at the embryonic and larval stages, despite the fact that they have experienced range reductions in the Willamette Valley of Oregon, USA. However, UV-B is lethal to embryonic and larval R. aurora at levels slightly above those currently experienced during development. Therefore, we predicted that exposure of embryos to ambient UV-B radiation would result in sublethal effects on larval growth and development. We tested this by exposing R. aurora embryos to ambient UV-B in the field and then raising individuals in the laboratory for 1 month after hatching. Larvae that were exposed to UV-B as embryos were smaller and less developed than the non-exposed individuals 1 month post-hatching. These types of sublethal effects of UV-B exposure indicate that current levels of UV-B could already be influencing amphibian development.  相似文献   

20.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号