首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Experimental investigation of the intensity of potential competitive interactions among increasingly abundant tropically‐associated grey Lutjanus griseus and lane snapper Lutjanus synagris and resident northern Gulf of Mexico (nGOM) red snapper Lutjanus campechanus was undertaken in large outdoor mesocosms. In pair‐wise interaction trials, compared with L. synagris, L. campechanus demonstrated significantly increased roving behaviour and predatory activity. While no significant difference in these activities was observed between L. campechanus and L. griseus, when all three snappers (Lutjanidae) were grouped together L. campechanus swimming activity significantly decreased in the presence of both tropically‐associated species. Overall, L. campechanus were more active and aggressive predators and appear to be competitively resistant to L. griseus and L. synagris. As lower latitude species have continued to become increasingly prevalent in nGOM habitats and regional warming continues to affect resident reef‐associated fishes, these findings contribute to the assessment of the effects of warming‐related species shifts upon nGOM fishes and document current partial resilience of L. campechanus to climate‐related expansions of tropical confamilials.  相似文献   

2.
    
  1. Freshwater mussels (Unionidae) are a highly imperilled faunal group. One critical threat is thermal sensitivity, because global climate change and other anthropogenic activities contribute to increasing stream temperature and altered hydrologic flow that may be detrimental to freshwater mussels.
  2. We incorporated four benthic environmental components – temperature, sediment, water level (a surrogate for flow) and a vertical thermal gradient in the sediment column – in laboratory mesocosm experiments with juveniles of two species of freshwater mussels (Lampsilis abrupta and Lampsilis radiata) and tested their effects on survival, burrowing behaviour and byssus production.
  3. Increasing temperature diminished burrowing behaviour significantly in both species (< 0.01), and the dewatered treatment significantly reduced burrowing in L. radiata, compared with that in the watered treatment. Increasing temperature also significantly reduced byssus production in both species (< 0.01). Median lethal temperatures (LT50) ranged from 29.9 to 35.6 °C. Mussels did not burrow beneath the top stratum of sediment (0–2.5 cm) and thus did not use the available thermal refuge.
  4. Our findings suggest that rising stream water temperature and dewatering may directly impact freshwater mussel abundance by causing mortality and may have indirect impacts via sublethal effects. Reduced burrowing capacity may hamper ability to escape predation or unfavourably high or low flows, and decreased byssus production may inhibit attachment and dispersal capabilities in juveniles.
  相似文献   

3.
1. Climate change may significantly influence lake carbon dynamics and consequently the exchange of CO2 with the atmosphere. Warming will accelerate multiple processes that either absorb or release CO2, making predicting the net effect of warming on CO2 exchange with the atmosphere difficult. Here we experimentally test how the CO2 flux of deep and shallow systems responds to warming. To do this, we conducted a greenhouse experiment using mesocosms of two depths, experiencing either ambient or warmed temperatures. 2. Deeper mesocosms were found to have a lower average CO2 concentration than shallower mesocosms under ambient temperature conditions. In addition, warming interacts with mesocosm depth to affect the average CO2 concentration; there was no effect of warming on the average CO2 concentration of deep mesocosms, but shallow mesocosms had significantly lower average CO2 concentrations when warmed. 3. The difference in CO2 concentration resulting from the depth manipulation was due to varying loss rates of particulate carbon to the sediments. There was a strong negative correlation between CO2 and sedimentation rates in the deep mesocosms suggesting that high particulate carbon loss to the sediments lowered the CO2 concentration in the water column. There was no correlation between CO2 and sedimentation rates observed for shallow mesocosms suggesting enhanced carbon regeneration from the sediments was maintaining higher CO2 concentrations in the water column. 4. Relationships between CO2 and algal concentrations indicate that the reduction in CO2 concentrations resulting from warming is due to increased per capita algal turnover rates depleting CO2 in the water column. Our results suggest that the carbon dynamics and CO2 flux of shallow systems will be affected more by climate warming than deep systems and the net effect of warming is to increase CO2 uptake.  相似文献   

4.
    
Global climate change models forecast an increasing frequency and duration of extreme flood events, including during the growing season. In this mesocosm experiment, the survival, growth, and flowering of two hydric and two mesic wetland plant species were monitored under two extreme flood regimes, namely, repeated 2‐ and 7‐day floods, and compared with unflooded conditions. Plant survival was not significantly affected by flooding, but species showed different growth and flowering responses to the flood regimes. The hydric species Cardamine pratensis showed contrasting responses to floods with significantly more flowering stems and longer leaves in the 2‐day regime but delayed and poorer flowering in the 7‐day regime. Juncus articulatus, the other hydric species, responded most actively to 7‐day flooding, with significantly longer leaves, taller and more abundant flowering stems, and more flowers than in unflooded conditions. The mesic species Ranunculus acris showed variable growth and phenological responses to flooding, whereas Scorzoneroides autumnalis was most affected by the 7‐day flood regime, producing significantly shorter leaves and flowering stems and fewer flowers earlier in the season, compared with unflooded conditions. Overall, repeated 7‐day floods had a greater impact on plant performance than 2‐day flood events. All four species showed resilience to extreme flooding, irrespective of whether they were classed as hydric or mesic, but there was differential tolerance between species. This suggests that wetlands should be able to sustain vegetation under flooding extremes induced by climate change but community composition, biodiversity, and wetland services will all be affected.  相似文献   

5.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed.  相似文献   

6.
7.
    
The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats—and the processes that generate and maintain them—will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.  相似文献   

8.
    
The effects of asymmetric interactions on population dynamics has been widely investigated, but there has been little work aimed at understanding how life history parameters like generation time, life expectancy and the variance in lifetime reproductive success are impacted by different types of competition. We develop a new framework for incorporating trait‐mediated density‐dependence into size‐structured models and use Trinidadian guppies to show how different types of competitive interactions impact life history parameters. Our results show the degree of symmetry in competitive interactions can have dramatic effects on the speed of the life history. For some vital rates, shifting the competitive superiority from small to large individuals resulted in a doubling of the generation time. Such large influences of competitive symmetry on the timescale of demographic processes, and hence evolution, highlights the interwoven nature of ecological and evolutionary processes and the importance of density‐dependence in understanding eco‐evolutionary dynamics.  相似文献   

9.
    
How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculturs and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is.  相似文献   

10.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

11.
Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.  相似文献   

12.
13.
    
  1. In addition to abiotic determinants, biotic factors, including competitive, interspecific interactions, limit species' distributions. Environmental changes in human disturbance, land use and climate are predicted to have widespread impacts on interactions between species, especially in the order Lagomorpha due to the higher latitudes and more extreme environmental conditions they occupy.
  2. We reviewed the published literature on interspecific interactions in the order Lagomorpha and compared the biogeography, macroecology, phylogeny and traits of species known to interact with those of species with no reported interactions, to investigate how projected future environmental change may affect interactions and potentially alter species' distributions.
  3. Thirty‐three lagomorph species have competitive interactions reported in the literature; the majority involve hares (Lepus sp.) or the eastern cottontail rabbit (Sylvilagus floridanus). Key regions for interactions are located between 30–50°N of the Equator, and include eastern Asia (southern Russia on the border of Mongolia) and North America (north‐western USA).
  4. Closely related, large‐bodied, similarly sized species occurring in regions of human‐modified, typically agricultural landscapes, or at high elevations, are significantly more likely to have reported competitive interactions than other lagomorph species.
  5. We identify species' traits associated with competitive interactions, and highlight some potential impacts that future environmental change may have on interspecific interactions. Our approach using bibliometric and biological data is widely applicable, and with relatively straightforward methodologies, can provide insights into interactions between species.
  6. Our results have implications for predicting species' responses to global change, and we advise that capturing, parameterizing and incorporating interspecific interactions into analyses (e.g. species distribution modelling) may be more important than suggested by the literature.
  相似文献   

14.
To help evaluate root distribution patterns, elongation rates of individual roots were measured as a function of soil temperature for Encelia farinosa (a C3 species), Pleuraphis rigida (C4), and Agave deserti (CAM), sympatric codominants in the northwestern Sonoran Desert. Measurements were made at current and doubled CO2 concentrations under winter and summer conditions of air temperature (day/night temperatures of 17 C/10 C and 33 C/22 C, respectively). The three species had different optimal temperatures for root elongation (Topt) under winter conditions (25 C for E. farinosa, 35 C for P. rigida, and 30 C for A. deserti); Topt increased by 2-3 C under summer conditions for all three species. The limiting temperatures for elongation also acclimated from winter to summer conditions. The rate of root elongation at Topt was higher under summer than winter conditions for E. farinosa (9 vs. 6 mm d−1) and P. rigida (20 vs. 14 mm d−1), reflecting conditions for maximum photosynthesis; no difference occurred for A. deserti (9 vs. 10 mm d−1). Decreased elongation rates at extreme temperatures were associated with less cell division and reduced cell extension. The doubled CO2 concentration increased average daily root elongation rates for A. deserti under both winter (7%) and summer (12%) conditions, reflecting increased cell extension, but had no effect for the other two species. Simulations of root elongation as a function of soil temperatures showed that maximum elongation would occur at different depths (16-20 cm for E. farinosa, 4-8 cm for P. rigida, and 0-4 cm for A. deserti) and during different seasons (winter to spring for E. farinosa, spring to summer for P. rigida, and all year for A. deserti), contributing to their niche separation. Shading of the soil surface moderated daily variations in soil temperature, reducing seasonal root elongation for winter and spring and increasing elongation for summer. Shading also altered root distribution patterns, e.g., optimal rooting depth for A. deserti and especially P. rigida increased for a hot summer day.  相似文献   

15.
16.
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.  相似文献   

17.
Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.  相似文献   

18.
1. The larger lakes of the English Lake District have been the subject of intensive scientific study for more than 60 years. Year‐to‐year variations in the weather have recently been shown to have a major effect on their physical characteristics. The area is mild but very wet and the dynamics of the lakes are strongly influenced by the movement of weather systems across the Atlantic. 2. Here, we combine the results of long‐term measurements and the projections from a Regional Climate Model (RCM) to assess the potential impact of climate change on the surface temperature and residence times of the lakes. 3. The RCM outputs used were produced by the U.K. Hadley Centre and are based on the IPCC ‘A2’ scenario for the emission of greenhouse gases. These suggest that winters in the area will be very much milder and wetter by the 2050s and that there will be a pronounced reduction in the summer rainfall. 4. An analysis of the meteorological data acquired between 1940 and 2000 shows that there have been progressive increases in the winter air temperature and in the rainfall which are correlated with the long‐term change in the North Atlantic Oscillation. The trends reported during the summer were less pronounced and were correlated with the increased frequency of anticyclonic days and a decrease in the frequency of westerly days in the British Isles. 5. A simple model of the year‐to‐year variations in surface temperatures showed that the highest winter temperatures were recorded in the deeper lakes and the highest summer temperatures in the lakes with the shallowest thermoclines. When this model was used to predict the surface temperatures of the lakes in the 2050s, the greatest winter increase (+1.08 °C) was observed in the shallowest lake and the greatest summer increase (+2.18 °C) in the lake with the shallowest thermocline. 6. The model used to estimate the seasonal variation in the residence time of the lakes showed that the most pronounced variations were recorded in lakes with a short residence time. Average winter residence times ranged from a minimum of 10 days to a maximum of 436 days and average summer values from a minimum of 23 days to a maximum of 215 days. When this model was used to predict the residence time of the lakes in the 2050s, the greatest winter decrease (−20%) was observed in the smallest lake and the greatest summer increase (+92%) in the lake with the shortest residence time. 7. The results are discussed in relation to trends reported elsewhere in Europe and the impact of changes in the atmospheric circulation on the dynamics of the lakes. The most serious limnological effects were those projected for the summer and included a general increase in the stability of the lakes and a decrease in the flushing rate of the lakes with short residence times.  相似文献   

19.
Amiel JJ  Shine R 《Biology letters》2012,8(3):372-374
A hatchling reptile''s sex, body size and shape, and locomotor performance can be influenced not only by its genes, but also by the temperature that it experiences during incubation. Can incubation temperature also affect a hatchling''s cognitive skills? In the scincid lizard Bassiana duperreyi, higher incubation temperatures enhanced the resultant hatchling''s learning performance. Hence, factors such as maternal nest-site selection and climate change affect not only the size, shape and athletic abilities of hatchling reptiles, but also their ability to learn novel tasks.  相似文献   

20.
1. Anthropogenic effects have propelled us into what many have described as the sixth mass extinction, and amphibians are among the most affected groups. The causes of global amphibian population declines and extinctions are varied, complex and context‐dependent and may involve multiple stressors. However, experimental studies examining multiple factors contributing to amphibian population declines are rare. 2. Using outdoor mesocosms containing zooplankton, phytoplankton, periphyton and tadpoles, we conducted a 2 × 2 × 3 factorial experiment that examined the separate and combined effects of an insecticide and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three different assemblages of larval pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). 3. Larval amphibian growth and development were affected by carbaryl and the amphibian assemblage treatment, but only minimally by Bd. Carbaryl delayed metamorphosis in both amphibian species and increased the growth rate of P. regilla. Carbaryl also reduced cladoceran abundance, which, in turn, had positive effects on phytoplankton abundance but no effect on periphyton biomass. Substituting 20 intraspecific competitors with 20 interspecific competitors decreased the larval period but not the growth rate of P. regilla. In contrast, substituting 20 intraspecific competitors with 20 interspecific competitors had no effect on R. cascadae. Results of real‐time quantitative polymerase chain reaction (qPCR) analysis confirmed infection of Bd‐exposed animals, but exposure to Bd had no effects on either species in univariate analyses, although it had significant or nearly significant effects in several multivariate analyses. In short, we found no interactive effects among the treatments on amphibian growth and development. 4. We encourage future research on the interactive effects of pesticides and pathogens on amphibian communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号