首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sandoz 6706 pretreatment of white light grown barley seedlings causes a 60% increase in saponarin (6-C-glucosyl-7-O-glucosylapigenin) but a 300% increase in lutonarin (3′-hydroxysaponarin). Norflurazon has little effect on saponarin levels but is almost as effective as Sandoz 6706 in enhancing lutonarin net synthesis. Barley roots contain saponarin and lutonarin only after herbicide treatment. Mung bean seedlings respond to Sandoz 6706 by accumulating higher levels of rutin and delphinidin 3-glucoside. The results are discussed in relation to the site of action of the herbicides, the High Energy photoresponse, and control of flavonoid 3′-hydroxylation.  相似文献   

2.
Five-day-old etiolated barley plumules contain the C-glucosylflavones saponarin, lutonarin, and lutonarin 3′-methyl ether. When harvested 24 hr after illumination, increased flavonoid levels were essentially linear with increased energies of monochromatic light at seven wavelengths between 450 and 750 nm. Action spectra for saponarin and for a mixture of lutonarin and its 3′-methyl ether were determined between 380 and 760 nm at 6.6 kerg·cm?2. The saponarin action spectrum showed distinct peaks at 620 and at 660 nm. These two peaks were similar in their photoreversibility when followed by either 6·6 or 34 kerg·cm?2 of far-red light. Phytochrome is apparently the photoreceptor for the saponarin action spectrum. Lutonarin and its 3′-methyl ether showed peaks at 520 580, 620 and near 660 nm. The 660 nm peak was not photoreversible by 6·6 kerg·cm?1, but was by 34 kerg·cm?2, of far-red light. Phytochrome and protochlorophyll are the likely photoreceptors for these 3′-substituted flavonoids.  相似文献   

3.
Several papers have appeared in the literature since 1992 which refer to a major "isoflavonoid" antioxidant in young green barley leaves (Hordeum vulgare) as 2'-O-glucosylisovitexin. In the present paper the original NMR data supporting this structural assignment are examined and found to have been misinterpreted. HPLC and NMR data are used to prove that the major flavonoid antioxidants in young green barley leaves are in fact the flavone-C-glycosides, saponarin and lutonarin.  相似文献   

4.
Barley (Hordeum vulgare L.) was grown with UV-B (280–320 nm) at levels simulating 25 nr 5% ozone depletion on the date of the summer solstice al 40°N latitude, with UV-A (320–400 nm), or with no supplemental irradiation. In plant growth chambers providing 300 μmol m?2 s?1 photosynthetically active radiation (PAR). UV-B-grown leaves elongated more slowly than controls but reached the same final length 1 day later. Leal specific fresh weight (mass leaf area?1) was significantly increased by UV-B after the 7th day of growth. IV-B did not significantly affect leaf area, fresh weight, dry weight, total chlorophylls, total carotenoids or photosynthetic quantum efficiency. CO2 assimilation was decreased by UV-B only at internal CO2 levels above 250 μl l?1. By the 8th day of growth, UV-B increased flavonoid (saponarin and lutonarin) accumulation in both the lower epidermis and the mesophyll: about 40% of the saponarin and 20% of the lutonarin were in the lower epidermis under all experimental conditions. Glasshouse conditions proved too variable for reproducible determination of growth and photosynthesis but were reliable for determining developmental changes in flavonoid (saponarin and lutonarin) accumulation and provided up to 800 μmol m?2 s?1 PAR. In the glasshouse UV-B-grown leaves had more flavonoids than controls al all stages from 5 to 30 days after planting: ca 509 more saponarin and 100% more lutonarin. Levels of soluble (vacuolar) ferulic acid esters were similar under all conditions on day 5. and on day 20 or later, but were significantly higher in UV-B-grown plants on days 10 and 15. UV-B decreased insoluble (cell-wall-bound) ferulic acid esters on a whole leaf basis but significantly increased this fraction in the lower epidermis. UV-A had no significant effects on growth, photosynthesis or ferulic acid, but it slightly increased flavonoid accumulation. The results are discussed in terms of secondary phenolics as a tissue-specific, developmentally regulated adaptive response to UV-B.  相似文献   

5.
Protoplasts isolated from 6-d-old primary leaves of barley (Hordeum vulgare L.) contain an enzyme which transfers the glucosyl moiety of uridine-diphosphateglucose to isovitexin, resulting in the formation of saponarin, the major flavonoid of barley. Purified chloroplasts isolated from protoplasts contained less than 2% of the total glucosyltransferase activity. These chloroplasts were 97% intact, based on ribulose-bisphosphate-carboxylase activity. Similarly low levels of glucosyltransferase activity were found in mitochondria and microbody or microsomal preparations from protoplasts. The soluble fraction (cytosol) contained at least 93% of the isovitexin 7-O-glucosyltransferase activity.  相似文献   

6.
In many cases, secondary plant products accumulate in the large central vacuole of plant cells. However, the mechanisms involved in the transport of secondary compounds are only poorly understood. Here, we demonstrate that the transport mechanisms for the major barley (Hordeum vulgare) flavonoid saponarin (apigenin 6-C-glucosyl-7-O-glucoside) are different in various plant species: Uptake into barley vacuoles occurs via a proton antiport and is competitively inhibited by isovitexin (apigenin 6-C-glucoside), suggesting that both flavone glucosides are recognized by the same transporter. In contrast, the transport into vacuoles from Arabidopsis, which does not synthesize flavone glucosides, displays typical characteristics of ATP-binding cassette transporters. Transport of saponarin into vacuoles of both the species is saturable with a K(m) of 50 to 100 microM. Furthermore, the uptake of saponarin into vacuoles from a barley mutant exhibiting a strongly reduced flavone glucoside biosynthesis is drastically decreased when compared with the parent variety. Thus, the barley vacuolar flavone glucoside/H(+) antiporter could be modulated by the availability of the substrate. We propose that different vacuolar transporters may be responsible for the sequestration of species-specific/endogenous and nonspecific/xenobiotic secondary compounds in planta.  相似文献   

7.
Barley (Hordeum vulgare) primary leaves synthesize saponarin, a 2-fold glucosylated flavone (apigenin 6-C-glucosyl-7-O-glucoside), which is efficiently accumulated in vacuoles via a transport mechanism driven by the proton gradient. Vacuoles isolated from mesophyll protoplasts of the plant line anthocyanin-less310 (ant310), which contains a mutation in the chalcone isomerase (CHI) gene that largely inhibits flavonoid biosynthesis, exhibit strongly reduced transport activity for saponarin and its precursor isovitexin (apigenin 6-C-glucoside). Incubation of ant310 primary leaf segments or isolated mesophyll protoplasts with naringenin, the product of the CHI reaction, restores saponarin biosynthesis almost completely, up to levels of the wild-type Ca33787. During reconstitution, saponarin accumulates to more than 90% in the vacuole. The capacity to synthesize saponarin from naringenin is strongly reduced in ant310 miniprotoplasts containing no central vacuole. Leaf segments and protoplasts from ant310 treated with naringenin showed strong reactivation of saponarin or isovitexin uptake by vacuoles, while the activity of the UDP-glucose:isovitexin 7-O-glucosyltransferase was not changed by this treatment. Our results demonstrate that efficient vacuolar flavonoid transport is linked to intact flavonoid biosynthesis in barley. Intact flavonoid biosynthesis exerts control over the activity of the vacuolar flavonoid/H(+)-antiporter. Thus, the barley ant310 mutant represents a novel model system to study the interplay between flavonoid biosynthesis and the vacuolar storage mechanism.  相似文献   

8.
The aim of the present investigation was to define the role of soluble flavonoids as UV-B protectants in the primary leaf of barley (Hordeum vulgare L.). For this purpose we used a mutant line (Ant 287) from the Carlsberg collection of proanthocyanidin-free barley containing only 7% of total extractable flavonoids in the primary leaf as compared to the mother variety (Hiege 550/75). Seven-day-old leaves from plants grown under high visible light with or without supplementary UV-B radiation were used for the determination of UV-B sensitivity. UV-B-induced changes were assessed from parameters of chlorophyll fluorescence of photosystem II, including initial and maximum fluorescence, apparent quantum yield, and photochemical and non-photochemical quenching. A quartz fibre-optic microprobe was used to evaluate the amount of potentially harmful UV-B (310 nm radiation) penetrating into the leaf as a direct consequence of flavonoid deficiency. Our data indicate an essential role of flavonoids in UV-B protection of barley primary leaves. In leaves of the mutant line grown under supplementary UV-B, an increase in 310nm radiation in the mesophyll and a strong decrease in the quantum yield of photosynthesis were observed as compared to the corresponding mother variety. Primary leaves of liege responded to supplementary UV-B radiation with a 30% increase in the major flavonoid saponarin and a 500% increase in the minor compound lutonarin. This is assumed to be an efficient protective response since no changes in variable chlorophyll fluorescence were apparent. In addition, a further reduction in UV-B penetration into the mesophyll was recorded in these leaves.  相似文献   

9.
The ribsome-deficient plastids of the albino leaves of the barley mutant albostrians divide at about the same rate as normal plastids and contain similar levels of plastids DNA to the normal plastids. Double-ring structures were observed around the neck of constricting dumbbell-shaped, ribosome-deficient plastids in the basal intercalary meristem of albino leaves. In the distal region of albino leaves the ribosome-deficient plastids contain a rudimentary thylakoid system often closely associated with DNA nucleoids. It is suggested that nuclear coded proteins synthesized within the cytoplasm are responsible for the formation of the double-ring structures and the rudimentary thylakoids of albino plastids.  相似文献   

10.
Purified barley carboxypeptidase exhibits high activity against a number of N-substituted amino acid esters, which are commonly used as synthetic substrates for mammalian and microbial proteinases. The proteinases of barley, on the contrary, do not hydrolyse these compounds. Because many other plants contain carboxypeptidases closely resembling the barley enzyme, we conclude that synthetic ester substrates should not be used to detect proteinase activity in extracts of higher plants. Plant carboxypeptidases also liberate C-terminal tryptophan from α-casein. Therefore, casein also is an unreliable substrate for plant proteinases.  相似文献   

11.
The effects of jasmonic acid (JA) on secondary metabolism in barley (Hordeum vulgare L.) were investigated. A reversed-phase HPLC analysis revealed that the amount of a particular compound increased in excised barley leaf segments that had been treated with JA. This compound was purified and identified as 6'-feruloylsaponarin (1) by spectroscopic analyses and alkaline hydrolysis. A related compound, 6'-sinapoylsaponarin (2), was also found to accumulate in excised leaves independently of the JA treatment. The accumulation of these compounds was accompanied by a decrease in the saponarin (3) content. [8,9-(13)C]p-Coumaric acid and [2,3,4,5,6-(2)H]L-phenylalanine were effectively incorporated into the hydroxycinnamoyl moieties in 1 and 2, while the degree of incorporation of the labeled precursors into the saponarin part was small. These findings indicate that the hydroxycinnamoyl moieties of 1 and 2 are synthesized de novo from phenylalanine via the phenylpropanoid pathway, and that the saponarin part is mainly provided by the constitutive pool of 3.  相似文献   

12.
The effects of jasmonic acid (JA) on secondary metabolism in barley (Hordeum vulgare L.) were investigated. A reversed-phase HPLC analysis revealed that the amount of a particular compound increased in excised barley leaf segments that had been treated with JA. This compound was purified and identified as 6´´´-feruloylsaponarin (1) by spectroscopic analyses and alkaline hydrolysis. A related compound, 6´´´-sinapoylsaponarin (2), was also found to accumulate in excised leaves independently of the JA treatment. The accumulation of these compounds was accompanied by a decrease in the saponarin (3) content. [8,9-13C]p-Coumaric acid and [2,3,4,5,6-2H]L-phenylalanine were effectively incorporated into the hydroxycinnamoyl moieties in 1 and 2, while the degree of incorporation of the labeled precursors into the saponarin part was small. These findings indicate that the hydroxycinnamoyl moieties of 1 and 2 are synthesized de novo from phenylalanine via the phenylpropanoid pathway, and that the saponarin part is mainly provided by the constitutive pool of 3.  相似文献   

13.
The distribution of S-type and P-type plastids in the sieve elements of 30 species from 13 families of theConiferophytina andCycadophytina is recorded, of which 21 species were studied for the first time with respect to their sieve-element plastids. While starch storing S-type plastids are the most commonly occurring type throughout both taxa, all thePinaceae examined (11 species of 7 genera) contain P-type plastids characterized by a peripheral, ring-shaped bundle of protein filaments, an additional protein crystalloid, and several starch grains. Starch grains of sieve-element plastids in theConiferophytina andCycadophytina are commonly club-shaped. Taxonomic implications of these ultrastructural findings on sieve-element plastids are discussed.  相似文献   

14.
The effect of seedling age and of the time of greening on the incorporation of 1-14C-acetate into lipids by isolated barley (Hordeum vulgare cultivar Svalöf's Bonus) plastids was examined. The fatty acid synthesizing capacity of plastids isolated from 5-day-old seedlings did not increase markedly from zero to 36 hours of greening nor was a light stimulation of fatty acid synthesis observed. However, an increasing capacity for fatty acid synthesis and an increasing light stimulation of this process with greening were attained by the plastids isolated from 7-, 9-, and 11-day-old seedlings.  相似文献   

15.
《Phytomedicine》2014,21(2):148-154
This study investigated the hepatoprotective activity of saponarin, isolated from Gypsophila trichotoma Wend., using in vitro/in vivo hepatotoxicity model based on carbone tetrachloride (CCl4)-induced liver damage in male Wistar rats. The effect of saponarin was compared with those of silymarin. In vitro experiments were carried out in primary isolated rat hepatocytes. Cell incubation with CCl4 (86 μmol l−1) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH and elevation in MDA quantity. Cell pre-incubation with saponarin (60–0.006 μg/ml) significantly ameliorated CCl4-induced hepatic damage in a concentration-dependent manner. These results were supported by the following in vivo study. Along with decreased MDA quantity and increased level of cell protector GSH, seven day pre-treatment of rats with saponarin (80 mg/kg bw; p.o.) also prevented CCl4 (10%, p.o.)-caused oxidative damage by increasing antioxidant enzyme activities (CAT, SOD, GST, GPx, GR). Biotransformation phase I enzymes were also assessed. Administered alone, saponarin decreased EMND and AH activities but not at the same extent as CCl4 did. However, pre-treatment with saponarin significantly increased enzyme activities in comparison to CCl4 only group. The observed biochemical changes were consistent with histopathological observations where the hepatoprotective effect of saponarin was comparative to the effects of the known hepatoprotecor silymarin. Our results suggest that saponarin, isolated from Gypsophila trichotoma Wend., showed in vitro and in vivo hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

16.
The flower colour of Strongyledon macrobotrys is luminous blue green and attracts bats for pollination. The chemical basis for development of the flower colour was investigated. The flower contained an anthocyanin (malvin) and a flavone (saponarin), approximately 1:9 (malvin: saponarin) in molar ratio. The pH of the pigmented epidermal cell sap of the jade vine petal was exceptionally high, 7.90, while the pH value of the colourless inner tissue was 5.60. Copigmentation test using the mixtures of malvin and saponarin (1:9 M ratio) at various pH values revealed that the characteristic blue green colour of the jade vine is developed by copigmentation of malvin with saponarin in slightly alkaline cell sap, pH 7.9. In the copigmentation in slightly alkaline condition, saponarin shows a strong yellow colour, which gives a greenish tone to the flower colour.  相似文献   

17.
Magnesium chelatase catalyses the insertion of Mg2+ into protoporphyrin and is found exclusively in organisms which synthesise chlorophyll or bacteriochlorophyll. Soluble protein preparations containing >10 mg protein/ml, obtained by gentle lysis of barley plastids and Rhodobacter sphaeroplasts, inserted Mg2+ into deuteroporphyrin IX in the presence of ATP at rates of 40 and 8 pmoles/mg protein per min, respectively. With barley extracts optimal activity was observed with 40 mM Mg2+. The activity was inhibited by micromolar concentrations of chloramphenicol. Mutations in each of three genetic loci, Xantha-f, -g and -h, in barley destroyed the activity. However, Mg-chelatase activity was reconstituted in vitro by combining pairwise the plastid stroma protein preparations from non-leaky xantha-f, -g and -h mutants. This establishes that, as in Rhodobacter, three proteins are required for the insertion of magnesium into protoporphyrin IX in barley. These three proteins, Xantha-F, -G and -H, are referred to as Mg-chelatase subunits and they appear to exist separate from each other in vivo. Active preparations from barley and Rhodobacter yielded pellet and supernatant fractions upon centrifugation for 90 min at 272?000?×?g. The pellet and the supernatant were inactive when assayed separately, but when they were combined activity was restored. Differential distribution of the Mg-chelatase subunits in the fractions was established by in vitro complementation assays using stroma protein from the xantha-f, -g, and -h mutants. Xantha-G protein was confined to the pellet fraction, while Xantha-H was confined to the supernatant. Reconstitution assays using purified recombinant BchH, BchI and partially purified BchD revealed that the pellet fraction from Rhodobacter contained the BchD subunit. The pellet fractions from both barley and Rhodobacter contained ribosomes and had an A260:A280 ratio of 1.8. On sucrose density gradients both Xantha-G and BchD subunits migrated with the plastid and bacterial ribosomal RNA, respectively.  相似文献   

18.
The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source.  相似文献   

19.
20.
K. Dehesh  B. van Cleve  M. Ryberg  K. Apel 《Planta》1986,169(2):162-171
Changes in the relative content of NADPH-protochlorophyllide oxidoreductase during the light-induced greening of barley plants were measured both in the total leaf extract as well as in intact and broken plastids. The enzyme protein was identified by its apparent molecular weight and its immunological crossreactivity with an antiserum directed against the NADPH-protochlorophyllide oxidoreductase. The monospecificity of the antiserum was tested by two different criteria: i. The antiserum was purified by affinity chromatography. ii. It was demonstrated that the antiserum crossreacts with only those polypeptides which appear to be enzymatically active. In the fraction of broken plastids isolated from leaves of briefly illuminated barley plants the concentration of the enzyme protein was reduced drastically. Our results indicate that this decrease in enzyme protein content is the consequence of an artificial proteolytic breakdown of the membrane-bound enzyme protein. In intact plastids and in the total leaf extract the concentration of the enzyme protein did not change dramatically during the first 4 to 6 h of illumination. However, when the exposure to continuous white light was extended further the concentration of the enzyme protein in intact plastids began to decline rapidly while in total leaf extracts the concentration remained almost constant for the next 10 h of light. These results indicate that part of the enzyme protein may be localized outside of the plastid compartment.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号