首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavonoids of 2 samples of Conocephalum conicum gametophyte tissue have been studied, one from U.S.A. and the other from Germany. Common to both samples were vicenin-2, lucenin-2, the 7-O-glucuronides of apigenin, chrysoeriol and luteolin and the previously unknown 7-O-glucuronide 4′-O-rhamnosides of apigenin, chrysoeriol and luteolin. Additionally the German sample contained the 7,4′-di-O-glucuronides of apigenin and luteolin and a new compound, apigenin 7-O-diglucuronide 4′-O-glucuronide. The North American sample contained, additionally, luteolin 7,3′-di-O-glucuronide, luteolin 7-O-glucuronide 3′,4′-di-O-rhamnoside (a new triglycoside) and 2 further derivatives of luteolin 7-O-glucuronide. Evidence is presented for the existence of geographic faces of C. conicum and for the qualitative invariability of the flavonoid patterns with changing season or environment.  相似文献   

2.
The major flavonoids in Riccia crystallina are naringenin and its 7-O-glucoside, apigenin 7-O-glucoside and apigenin 7-O-glucuronide and derivatives. Ricciocarpus natans is a rich source of luteolin 7,3′-di-O-glucuronide and also contains the 7-O-glucuronides of apigenin and luteolin and the 3′-O-glucuronide of luteolin. A parallel between the production of biosynthetically simple flavonoids and reduced morphology is evident among these liverworts.  相似文献   

3.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

4.
The major flavonoid of Marchantia berteroana is hypolaetin 8-O-β-d-glucuronide. This is accompanied by apigenin and luteolin, isoscutellarein (8-hydroxyapigenin) 8-O-β-d-glucuronide, the 7-O-β-d-glucuronide and -galacturonide of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide and -galacturonide, luteolin 7,3′-di-O-β-d-glucuronide and -galacturonide, luteolin 3′,4′-di-O-β-d-glucuronide and -galacturonide, luteolin 7,4′-di-O-β-d-glucuronide, and hypolaetin 8,4′-di-O-β-d-glucuronide. The isoscutellarein and hypolaetin glucuronides, and the galacturonide flavones are all new natural products.  相似文献   

5.
Two flavones, luteolin 7-O-β-glucuronide and diosmetin 7-O-β-glucuronide, were isolated and identified from Chrysanthemum morifolium L. v. Ramat leaves. Identification techniques included HPLC DAD, MS, 1H and 13C NMR spectroscopy. At concentrations of 0.2 and 2.0 mM, luteolin 7-O-β-glucuronide significantly reduced the frond number and chlorophyll content of Lemna gibba plants, but did not significantly affect dry weight. At a concentration of 0.2 mM diosmetin 7-O-β-glucuronide had no significant effect on frond number, dry weight or chlorophyll concentration of L. gibba. These results indicate that an ortho-3′,4′-dihydroxy arrangement of the B-flavonoid ring in the luteolin compound is probably responsible for allelopathic activity.  相似文献   

6.
The conifer genus Phyllocladus is shown by comparative flavonoid chemistry to be remarkably homogeneous and quite distinct from other studied genera in the Podocarpaceae. It is characterized by the accumulation (in the foliage) of a predominance of flavone O-glycosides, and in particular, luteolin 7- and 3′-O-glycosides. Lower levels of flavonol O-glycosides are also evident. Two flavone glycosides are reported for the first time, luteolin 3′-O-α-L-rhamnopyranoside and luteolin 7-O-α-L-rhamnoside.  相似文献   

7.
Two luteolin O-glucuronides have been located exclusively in the photosynthetically active mesophyll of primary leaves of rye (Secale cereale). Their structures have been elucidated as luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]-4′-O-β-d-glucuronide and luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]. The former glycoside is a new natural compound.  相似文献   

8.
In the course of a chemotaxonomic survey of New Zealand Podocarpus species, a number of new flavonoid glycosides have been isolated from P. nivalis. These are: luteolin 3′-O-β-D-xyloside, luteolin 7-O-β-D-glucoside-3′-O-β-D-xyloside, dihydroquercetin 7-O-β-D-glucoside, 7-O-methyl-(2R:3R)-dihydrokaempferol 5-O-β-D-glucopyranoside, 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β-D-glucopyranoside, 7-O-methylkaempferol 5-O-β-D-glucopyranoside and 7-O-methylquercetin 5-O-β-D-glucopyranoside. Diagnostically useful physical techniques for distinguishing substitution patterns in dihydroflavonols are discussed and summarized. Glucosylation of the 5-hydroxyl group in (+)-dihydroflavonols is shown to reverse the sign of rotation at 589 nm.  相似文献   

9.
《Phytochemistry》1999,52(8):1701-1703
Three flavonoid glucuronides are reported from a n-BuOH extract of Picria fel-terrae (Scrophulariaceae). The structures were established by UV, one- and two-dimensional NMR and mass spectrometry as apigenin 7-O-β-glucuronide, luteolin 7-O-β-glucuronide and apigenin 7-O-β-(2″-O-α-rhamnosyl)glucuronide, the latter one being a new compound.  相似文献   

10.
The flavonoid chemistry of Takakia is described for the first time. T. lepidozioides, thought to be amongst the most primitive of extant liverworts, contains a high level and wide variety of flavone C- and O-glycosides, many of which are unique. New flavonoids include the 8-O-glucuronide and 8-O-xylosylglucoside of takakin (8-hydroxyacacetin), luteolin 6-C-arabinoside-8-C-pentoside, kaempferol 3-O-glucoside-7-O-xyloside and a number of tricetin C-glycosides. The only other known Takakia species, T. ceratophylla, contains the same 4 major constituents but significantly lacks flavonols. The often suggested relationship of Takakia with the order Calobryales is not supported by the available flavonoid data. Biochemical affinities of Takakia with all major liverwort orders are noted and the flavonoid data are interpreted as supporting the concept of Takakia as an isolated branch among the ancestors of modern bryophytes.  相似文献   

11.
External and internal flavonoids were isolated from 12 Uncarina taxa (Pedaliaceae), endemic to Madagascar. Four flavone aglycones, tricetin 7,3′,5′-trimethyl ether, tricetin 7,4′,5′-trimethyl ether, 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone and eupatorin were isolated from leaf wax of seven Uncarina taxa, Uncarina grandidieri, Uncarina decaryi, Uncarina abbreviata, Uncarina turicana, Uncarina platycarpa, Uncarina leandrii var. leandrii and Uncarina peltata, but not Uncarina stellulifera, Uncarina perrieri, Uncarina sakalava, Uncarina leptocarpa and U. leandrii var. rechbergeri. Furthermore, eight flavonoid glycosides were isolated from the leaves. Major glycosides were apigenin and luteolin 7-O-glucuronides and occurred in all the Uncarina taxa examined, except the absence of the former compound in U. peltata. Other glycosides were identified as hispidulin, jaceosidin, chrysoeriol and tricin 7-O-glucuronides, and luteolin 7,4′-di-O-glucuronide and a flavonol, isorhamnetin 3-O-diglucoside. From the results described above, methylated flavone aglycones and glucuronides were chemical characters of the leaves of Uncarina species, and also may be those of the family Pedaliaceae. Besides, an anthocyanin, two flavonols and three flavones were isolated from the flowers of U. grandidieri, and identified as cyanidin 3-O-rutinoside (anthocyanin), quercetin and isorhamnetin 7-O-glucuronides (flavonols) and apigenin, luteolin and jaceosidin 7-O-glucuronides (flavones).  相似文献   

12.
Thirty-three Sonchus, one Embergeria, one Babcockia and five Taeckholmia species were surveyed for their phenolic constituents. The coumarins scopoletin and aesculetin were found as major constituents of Embergeria, Babcockia and Taeckholmia species, and in lesser amount in some Sonchus species. Six flavone glycosides were identified: apigenin 7-glucuronide, apigenin 7-rutinoside, luteolin 7-glucoside, luteolin 7-glucuronide, luteolin 7-rutinoside and luteolin 7-glucosylglucuronide and the systematic significance of their distribution is discussed.  相似文献   

13.
The flavonoid patterns of plants of Elodea canadensis, E. ernstae and E. nuttallii apigenin were investigated. The main flavonoids of E. canadensis are apeginin, luteolin and chrysoeriol 7-O-diglucuronides, of E. nuttalli apigenin and luteolin 7-O- diglucuronides, and of E. ernstae apigenin and luteonin 7-O-monoglucoronides. The qualitative stability of these flavonoid patterns is checked by chromatographic comparison of various populations from a wide area of the three species, it is shown that the flavonoid patterns are valuable criteria for the separation of these species.  相似文献   

14.
From the aerial parts of Helichrysum chasmolycicum P.H Davis, which is an endemic species in Turkey, the flavonoids apigenin, luteolin, kaempferol, 3,5-dihydroxy-6,7,8-trimethoxyflavone, 3,5-dihydroxy-6,7,8,4′-tetramethoxyflavone, apigenin 7-O-glucoside, apigenin 4′-O-glucoside, luteolin 4′-O-glucoside, luteolin 4′,7-O-diglucoside, kaempferol 3-O-glucoside, kaempferol 7-O-glucoside and quercetin 3-O-glucoside were isolated. The methanol extract of the aerial parts of H. chasmolycicum showed antioxidant activity by DPPH method (IC50 0.92 mg/mL). Antimicrobial activity test was performed on the B, D, E extracts and also 3,5-dihydroxy-6,7,8-trimethoxyflavone and kaempferol 3-O-glucoside which were the major flavonoid compounds obtained from aerial parts of H. chasmolycicum by microbroth dilutions technique. The E (ethanol-ethyl acetate) extract showed moderate antimicrobial activity against Pseudomonas aeruginosa, B (petroleum ether-60% ethanol-chloroform) extract and 3,5-dihydroxy-6,7,8-trimethoxyflavone showed moderate antifungal activity against Candida albicans.  相似文献   

15.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

16.
The Heliohebe group of Veronica (sect. Hebe) consists of five species occurring in the South Island of New Zealand. These species and a hybrid were analysed for their flavonoids. Five flavone glycosides were isolated and identified by NMR spectroscopy and three additional glycosides were detected by LC–UV–MS. Luteolin 7-O-, 3′-O- and 4′-O-glucosides and apigenin 7-O-glucoside were present in all six taxa investigated, 6-hydroxyluteolin glycosides were found in five and a luteolin caffeoylglycoside in four taxa, while a hypolaetin 7-O-glycoside was detected only in Veronica pentasepala. The 3′-O- and 4′-O-glucosides of luteolin are also common in other species of Veronica sect. Hebe (restricted to the Southern Hemisphere), but are rare in Northern Hemisphere species of Veronica and thus act as good chemotaxonomic markers for the section. The relatively simple flavonoid profiles found in the Heliohebe group are plesiomorphic and consistent with the group's status as sister to the Hebe clade. Based on the detected flavonoids, two groups could be distinguished within the Heliohebe clade: (1) Veronica hulkeana, Veronica lavaudiana and Veronica raoulii, characterised by luteolin caffeoylglycoside, and (2) V. pentasepala and Veronica scrupea, where this compound is replaced by a 6-hydroxyluteolin dihexoside.  相似文献   

17.
The phytochemical investigation on Tanacetum sinaicum (Fresen.) Delile ex Bremer & Humphries led to the isolation of eight flavonoid aglycones (apigenin 1, acacetin 2, luteolin 3, chrysoeriol 4, cirsilineol 5, jaceidin 6, chrysosplenetin 7 and vitexicarpin; casticin 8), four flavonoid glycosides (apigenin 7-O-β-glucopyranoside 9, apigenin 7-O-β-glucuronide 10, luteolin 7-O-β-glucopyranoside 11 and luteolin 7-O-β-glucuronide 12) and three phenolics (4-hydroxy-3-methoxy benzoic acid 13, 3,4-dimethoxy benzoic acid 14 and 4-hydroxy acetophenone 15). Their structures were determined by chemical and spectroscopic analysis. Among them, compounds 1–3, 9, 11, 13 and 14 were reported for the first time from T. sinaicum. The chemotaxonomic significance of the isolated flavonoids was also summarized.  相似文献   

18.
Five new 8-hydroxyflavonoids have been identified from leaves of Solanum section Androceras: 8-methoxymyricetin 3,7,4′-trimethyl ether; 8-hydroxymyricetin 3,7,4′-trimethyl ether; 8-hydroxymyricetin 8-O-glucosylxyloside 3,7,4′-trimethyl ether; 8-hydroxychrysoeriol 7-methyl ether; 8-hydroxychrysoeriol 7-O-glucoside.  相似文献   

19.
A number of new flavonoid glycosides have been isolated from foliage of the New Zealand white pine, Dacrycarpus dacrydioides. These include tricetin 3′,5′-di-O-β-glucopyranoside; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methylmyricetin; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methyl-quercetin, and the 3′-O-β-xylopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3,4′-di-O-methylmyricetin. The accumulation of 3-methoxyflavones and B-ring trioxygenated flavonoids appears to distinguish D. dacrydioides from all other New Zealand members of the classical genus Podocarpus. Support for De Laubenfels' proposed separation of Dacrycarpus from this genus is seen in the present work.  相似文献   

20.
Thirteen flavonoid glycosides, including eight which are new have been identified in Riccia fluitans; aquatic and terrestrial forms of this plant have the same pattern. Luteolin 7-O-glucuronide-3′-O-mono(trans)ferulylglucoside is proposed as the type flavonoid for this species. Its absence from, and the presence of chrysoeriol in R. duplex, support the proposed separation of R. duplex from the R. fluitans complex. A micro-deacylation technique is described which can also be used for specific deglycosylation of luteolin glycosides at the 4′-hydroxyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号