首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
《Phytochemistry》1986,25(11):2581-2590
Four new glycosides (three cardenolides and a lignan), nine previously reported cardenolide glycosides and a known triterpenoid were isolated from the ethyl acetate extract of the aerial parts of Asclepias subulata. The elucidation of the structures and stereochemistry of the new glycosides has been accomplished using mainly 1H and 13C NMR and mass (EI and FAB) spectral data of their acetyl derivatives and comparison of these data with those of known glycosides from the same plant as well as from other plants. The new compounds were identified as 16α-hydroxycalactin, 3β-(β-D-glucopyranosyloxy)-19-car coroglaucigenin 3β-D-glucoside and 4-(β-D-glucopyranosyloxy)-larciresinol.  相似文献   

2.
An epimeric mixture of two novel cyclopentenoid cyanogenic glycosides, passibiflorin [1-(6-O-β-D-rhamnopyranosyl-β-D-glucopyranosyloxy)-4-hydroxycyclopent-2-en-1-nitrile] and its C-1 epimer, epipassibiflorin, has been isolated from Passiflora biflora and P. talamancensis. The structures were determined by means of 1H NMR and 13C NMR. Another novel cyclopentenoid cyanogenic glycoside, passitrifasciatin [1-(4-O-β-D-rhamnopyranosyl-β-D-glucopyranosyloxy)-4-hydroxycyclopent-2-en-1-nitrile] is described from Passiflora trifasciata. The structure was determined by means of 1H NMR. The identification of the sugar moieties was made by HPLC and TLC. The isolation of a β-1 → 4 and a β-1 → 6-rhamnoglucoside of cyclopentenoid cyanogens from three species of subgenus Plectostemma of Passiflora suggests that diglycosides of this type are taxonomically diagnostic for the section.  相似文献   

3.
Besides 7-(2-O-β-D-glucuronyl-β-D-glucuronyloxy)-5,3′,4′-trihydroxyflavone, scutellarin, rosmarinic acid and caffeic acid, two cyanogenic glycosides have been isolated from the dried leaves of Perilla frutescens var. acuta. One of them is prunasin and the other is (R)-2-(2-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy)-phenylacetonitrile, a new isomer of amygdalin.  相似文献   

4.
《Phytochemistry》1987,26(12):3348-3349
Kiggelaria africana and Carpotroche brasiliensis contain, besides gynocardin, 1-(β-D-glucopyranosyloxy)-4-hydroxy-2-cyclopentene-1-carbonitriles with cis allylic oxygens. Earlier reports on trans oxygenated isomers in the Flacourtiaceae should be verified.  相似文献   

5.
《Phytochemistry》1987,26(8):2363-2366
In a chemical examination of the bark ofPrunus grayana, three new phenylpropanoid glucosides, grayanoside A, grayanoside B and grayanin, have been isolated. The structures of these compounds have been established to be 2-(4-hydroxyphenyl)ethyl-(6-O-feruloyl)-β-D-glucopyranoside, 2-(3,4-dihydroxyphenyl)ethyl-(6-O-feruloyD-β-D-gluco and (2R)-[(6-O-caffeoyl)-β-D-glucopyranosyloxy]benzeneacetonitrile, respectively, on the basis of the spectroscopic studies and the chemical evidence.  相似文献   

6.
Alkylation of benzyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside in N,Ndimethyl formamide with (R)-2-chloropropionic acid gave crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-carboxyethyl]-β-D-glucopyranoside. After hydrogenolysis of the benzyl group 4-O-[(S)-D-carboxyethyl]-D-glucose was obtained which lactonized very easily. Treatment of benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-carboxyethyl]-β-D-glucopyranoside with diazomethane gave cristalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(methoxycarbonyl)ethyl]-β-D-glucopyranoside, which was reduced with lithium aluminium hydride to crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(hydroxymethyl)ethyl]-β-D-glucopyranoside After hydrogenolysis of the benzyl groups 4-O-[(S)-1-(hydroxymethyl)ethyl]-D-glucose was obtained. A similar sequence of reactions was performed with (S)-2-chloropropionic acid.  相似文献   

7.
A new non-flavonoid glycoside, 3′-hydroxypsilotin {6-[4′-(β-D-glucopyranosyloxy)-3′-hydroxyphenyl]-5,6-dihydro-2-oxo-2H-pyran}, was isolated from Psilotum nudum by droplet counter current chromatography and preparative HPLC. The structure was established by spectroscopic analysis including 1H and 13C NMR and high resolution mass spectrometry.  相似文献   

8.
A novel cyclopentenoid cyanogenic glycoside (1-(6-O-β-D-rhamnopyranosyl-β-D-glucopyranosyloxy)-cyclopent-2-en-1-nitrile-4-sulphate) has been isolated from Passiflora coccinea. The structure was determined by means of the 1H and 13C NMR spectrum of the sulphate and its corresponding acetate derivative. Identification of the sugar constituents was made by HPLC and TLC. Passicoccin is so far unique to subgenus Distephana and its presence here is evidence for a phylogenetic relationship between Distephana and subgenera Granadilla and Tacsonia.  相似文献   

9.
Glycosides of pyrrole alkaloid (pyrrolemarumine 4″-O-α-l-rhamnopyranoside) and 4′-hydroxyphenylethanamide (marumosides A and B) were isolated from leaves of Moringa oleifera along with eight known compounds; niazirin, methyl 4-(α-l-rhamnopyranosyloxy)benzylcarbamate, benzyl β-d-glucopyranoside, benzyl β-d-xylopyranosyl-(1 → 6)-β-d-glucopyranoside, kaempferol 3-O-β-d-glucopyranoside, quercetin 3-O-β-d-glucopyranoside, adenosine and l-tryptophan. Structure elucidations were based on analyses of chemical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

10.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

11.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

12.
Acetylation of benzyl 6-deoxy-3,4O-isopropylidene-β-L-galactopyranoside gave benzyl 2-O-acetyl-6-deoxy-3,4-O-isopropylidene-β-L-galactopyranoside (1). Removal of the isopropylidene group afforded benzyl 2-O-acetyl-6-deoxy-β-L-galactopyranoside (2), which was converted into benzyl 2-O-acetyl-6-deoxy-3,4-di-O-(methyl-sulfonyl)-β-L-galactopyranoside (3). Benzyl 2,3-anhydro-6-deoxy-4-O-(methyl-sulfonyl)-β-L-gulopyranoside (4) was obtained from 3 by treatment with alkali. Reaction of 4 with sodium azide in N,N-dimethylformamide gave a mixture of two isomeric benzyl 2,4-diazido-2,4,6-trideoxy hexoses, the syrupy diazido derivative 5 and the crystalline benzyl 2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (6). Acetylation of 6 afforded a compound whose n.m.r. spectrum was completely first order and in agreement with the structure of benzyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-β-L-idopyranoside (7). Lithium aluminium hydride reduction of 5, followed by acetylation, afforded a crystalline product (8), shown by n.m.r. spectroscopy to be benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-altropyranoside. Similar treatment of the diazido derivative 6 afforded benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-idopyranoside (9). Compounds 8 and 9 could also be obtained from 4 by treatment of the crude diazido mixture with lithium aluminium hydride, with subsequent N-acetylation. The syrupy benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranoside (10) and the crystalline benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-idopyranoside (11) thus obtained were then O-acetylated to give 8 and 9 respectively. Benzyl 2,4-diacetamido-2,4,6-trideoxy-β-L-talopyranoside (15) was obtained from 11 by treatment with methanesulfonyl chloride and subsequent solvolysis. Compound 15 was O-acetylated to yield benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-β-L-talopyranoside (16). the n.m.r. spectrum of which was in full agreement with the assigned structure. The mass spectra of compounds 8–11, 15, and 16 were also in agreement with their proposed structures. Removal of the benzyl groups from 10, 11 and 15 afforded the corresponding 2,4-diacetamido-2,4,6-trideoxyhexoses 12, 13, and 17, having the L-altro, L-ido, and L-talo configurations, respectively.  相似文献   

13.
《Carbohydrate research》1987,163(1):63-72
Benzyl 2-acetamido-3-O-allyl-6-O-benzyl-2-deoxy-4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)- α-d-glucopyranoside (4) was obtained in high yield on using the silver triflate method in the absence of base. Compound 4 was converted in six steps into benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucopyranosyl)-6-O-benzyl-3-O-(carboxymethyl)-2-deoxy-α-d- glucopyranoside, which was coupled with the benzyl ester of l-α-aminobutanoyl-d-isoglutamine and the product hydrogenolyzed to afford the title compound. O-Benzylation of benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-3-O-allyl-6-O-benzyl-2-deoxy-α-d-glucopyranoside with benzyl bromide and barium hydroxide in N,N-dimethylformamide is strongly exhanced by sonication of the reaction mixture.  相似文献   

14.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

15.
Five 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d-glucopyranoses (lipophilic, muramoyl dipeptide analogs) were synthesized from benzyl 2-(benzyloxycarbonylamino)-3-O-(d-1-carboxyethyl)-2-deoxy-5,6-O-isopropylidene-β-dglucopyranoside (1). Methanesulfonylation of 3, derived from the methyl ester of 1 by O-deisopropylidenation, gave the 6-methanesulfonate (4). (Tetrahydropyran-2-yl)ation of 4 gave benzyl 2-(benzyloxycarbonylamino)-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-6-O-(methylsulfonyl)-5-O-(tetrahydropyran-2-yl)-β-d- glucofuranoside, which was treated with sodium azide to give the corresponding 6-azido derivative (6). Condensation of benzyl 6-amino-2-(benzyloxycarbonyl-amino)-2,6-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-5-O-(tetrahydropyran-2-yl)-β-d-glucofuranoside, derived from 6 by reduction, with the activated esters of octanoic, hexadecanoic, and eicosanoic acid gave the corresponding 6-N-fatty acyl derivatives (8–10). Coupling of the 2-amino derivatives, obtained from compounds 8, 9, and 10 by catalytic reduction, with the activated esters of the fatty acids, gave the 2,6-(diacylamino)-2,6-dideoxy derivatives (11–15). Condensation of the acids, formed from 11–15 by de-esterification, with the benzyl ester of l-alanyl-d-isoglutamine, and subsequent hydrolysis, afforded benzyl 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine benzyl ester)-β-d-glucofuranosides. Hydrogenation of the dipeptide derivatives thus obtained gave the five lipophilic analogs of 6-amino-6-deoxymuramoyl dipeptide, respectively, in good yields.  相似文献   

16.
Trilobatin [4?-(β-D-glucopyranosyloxy)-2?,4”,6?-trihydroxydihydrochalcone] was synthesized from commercially available naringin in three steps with an overall yield of 30%. The key step was the acid-catalyzed site-selective hydrolysis of terminal α-rhamnopyranosidic linkage in neohesperidose involved in naringin under controlled conditions, by applying a high-pressure steam sterilizer.  相似文献   

17.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

18.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

19.
《Phytochemistry》1987,26(6):1665-1667
A novel cyclopentenoid cyanogenic glycoside, passisuberosin (1-(β-D-glucopyranosyloxy)-4-hydroxy-2,3-epoxycyclopentanenitrile), has been isolated from Passiflora suberosa. Its structure was determined by means of 1H NMR and 13C NMR and the identity of the glycosidic moieties by HPLC and TLC. A probable C-1 epimer, epipassisuberosin, was also present, as were smaller amounts of passicoriacin and epipassicoriacin, previously isolated from Passiflora coriacea. In addition, the presence of diglucosides ofpassisuberosin and epipassisuberosin was detected. These compounds differ in structure from those produced by other members of section Cieca, subgenus Plectostemma of Passiflora, the data suggest that the taxonomic placement of these two species should be re-evaluated.  相似文献   

20.
Prumycin (1) and related compounds have been synthesized from benzyl 2-(benzyloxycarbonyl)amino-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (4). Benzoylation of 4, followed by deisopropylidenation, gave benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-β-d-glucofuranoside (6), which was converted, via oxidative cleavage at C-5–C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (7). Benzylation of 3-O-benzoyl-2-(benzyloxycarbonyl)-amino-2-deoxy-d-xylopyranose (8), derived from 7 by hydrolysis, afforded the corresponding derivatives (9, 11) of β- and α-d-xylopyranoside, and compound 7 as a minor product. Treatment of benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-4-O-mesyl-β-d-xylopyranoside 10, formed by mesylation of 9, with sodium azide in N,N-dimethylformamide gave benzyl 4-azido-3-O-benzoyl-2-(benzyloxy-carbonyl)amino-2,4-dideoxy-α-l-arabinopyranoside (13), which was debenzoylated to compound 14. Selective reduction of the azide group in 14, and condensation of the 4-amine with N-[N-(benzyloxycarbonyl)-d-alaninoyloxy]succinimide, gave the corresponding derivative (15) of 1. Reductive removal of the protecting groups of 15 afforded 1. Prumycin analogs were also synthesized from compound 14. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号