首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annual mean total length (LT) of wild one‐sea‐winter (1SW) Atlantic salmon Salmo salar of the Norwegian River Imsa decreased from 63 to 54 cm with a corresponding decrease in condition factor (K) for cohorts migrating to sea from 1976 to 2010. The reduction in LT is associated with a 40% decline in mean individual mass, from 2 to 1·2 kg. Hatchery fish reared from parental fish of the same population exhibited similar changes from 1981 onwards. The decrease in LT correlated negatively with near‐surface temperatures in the eastern Norwegian Sea, thought to be the main feeding area of the present stock. Furthermore, S. salar exhibited significant variations in the proportion of cohorts attaining maturity after only one winter in the ocean. The proportion of S. salar spawning as 1SW fish was lower both in the 1970s and after 2000 than in the 1980s and 1990s associated with a gradual decline in post‐smolt growth and smaller amounts of reserve energy in the fish. In wild S. salar, there was a positive association between post‐smolt growth and the sea survival back to the River Imsa for spawning. In addition, among smolt year‐classes, there were significant positive correlations between wild and hatchery S. salar in LT, K and age at maturity. The present changes may be caused by ecosystem changes following the collapse and rebuilding of the pelagic fish abundance in the North Atlantic Ocean, a gradual decrease in zooplankton abundance and climate change with increasing surface temperature in the Norwegian Sea. Thus, the observed variation in the life‐history traits of S. salar appears primarily associated with major changes in the pelagic food web in the ocean.  相似文献   

2.
This study provides new data on Atlantic salmon Salmo salar life‐history traits across France. Using a long‐term recreational angling database (1987–2013) covering 34 rivers in three regions (genetic units), a decline in individual length, mass and a delayed adult return to French rivers was reported. Temporal similarities in trait variations between regions may be attributed to common change in environmental conditions at sea. The relative rate of change in phenotypic traits was more pronounced in early maturing fish [1 sea‐winter (1SW) fish] than in late maturing fish (2SW fish). Such contrasted response within populations highlights the need to account for the diversity in life histories when exploring mechanisms of phenotypic change in S. salar. Such detailed life‐history data on returning S. salar have not previously been reported from France. This study on French populations also contributes to reducing the gap in knowledge by providing further empirical evidence of a global pattern in S. salar across its distribution range. Results are consistent with the hypothesis that the observed changes in life‐history traits are primarily associated with environmental changes in the North Atlantic Ocean. They also emphasize the presence of less important, but still significant contrasts between region and life history.  相似文献   

3.
The annual variation in sea-age of maturation for a hatchery dependent stock of Atlantic salmon was compared to variation in post-smolt growth as evidenced by circuli spacing patterns. The proportion of returns of 1-seawinter (1 SW) and 2 SW salmon and the fraction of the smolt year class or cohort that maturated as 1 SW fish, were compared to seasonal growth indices determined from circuli spacing on the scales of smolt class survivors returning as 1 SW and 2 SW spawners. Using image processing techniques, we extracted inter-circuli distances from scales from 2244 recaptured fish. Spacing data for the first year at sea were collected and then expressed as seasonal growth indices for the spring period, when post-smolts first enter the ocean; the summer, when growth appears maximal; and winter, when growth appears to be at a minimum. In general, circuli spacings were wider for 1 SW than for the 2 SW returns of the same smolt cohort. The 1 SW fraction was significantly and positively correlated with late summer growth, suggesting that growth during this season is pivotal in determining the proportion of a smolt class that matures early.  相似文献   

4.
Relationships between growth at sea, smolt size and age at sexual maturation of Atlantic salmon Salmo salar were tested. The fish were offspring of brood stocks sampled in eight Norwegian rivers at latitudes between 59° and 70° N, hatchery reared and released at smolting at the mouth of the River Imsa (59° N). Smolt size influenced the subsequent growth rate of Atlantic salmon. The larger the fish were at release, the slower the yearly length increment at sea. Mean sea age at sexual maturity, measured as proportion of the returning adults attaining sexual maturity at sea age 2 years, was significantly correlated with mean growth rate during the first year at sea and mean smolt size ( r 2= 0·74, P < 0·001). Fish attaining maturity at a relatively high sea age were more fast growing during their first year at sea than those maturing at a younger age. The results indicate that high sea age at sexual maturation is a population-specific characteristic and associated with high early growth rate at sea.  相似文献   

5.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

6.
The 30 year time series analyses revealed large temporal variation in the return rates and a recent increase in abundance of previous spawning Atlantic salmon Salmo salar in the River Teno, northern Scandinavia. The mean proportion of repeat spawners was 7 and 4% in the total Atlantic salmon catch and 9 and 22% in multi‐sea‐winter (MSW) catch component for females and males, respectively. Previous spawners constituted on the average 7% of the catch in mass but up to 20%(31 t) and 30%(19 t) in 2003 and in 2004, respectively. In 1975–2000, the proportion of previous spawners varied between 1 and 6%(3–12% of MSW Atlantic salmon), whereas in 2001–2004, they accounted for 8–21%(16–35% of MSW Atlantic salmon) of the total Atlantic salmon catch. The number of previous spawners in the catch correlated significantly with the preceding numbers of respective 1–3 sea‐winter (SW) maiden Atlantic salmon 2 years earlier. The recent increase in the numbers of 1S1 and 2S1 (1 or 2 years at sea followed by first spawning and 1 year reconditioning period at sea) alternate spawning Atlantic salmon was a consequence of higher numbers of maiden 1SW and 2SW Atlantic salmon in the catches and increased sea temperatures. Similarly, the return rate of 1SW Atlantic salmon to second spawning has improved in recent years. Most previous spawners ascended and were captured early in the fishing season. The smolt and sea‐age combinations of repeat spawners comprised 68 age groups contributing with the annual mean of 15 age groups to the great diversity of the River Teno Atlantic salmon population complex.  相似文献   

7.
In the Simojoki River in the northern Gulf of Bothnia, reared salmon stocked as smolts produced considerable numbers of ascending one‐sea‐winter (1 SW) males, whereas the proportion of male 1 SW salmon was low among spawning migrants of wild or reared parr origin. The sex ratio among ascending wild fish and reared salmon stocked as parr was similar, with females predominating, while reared salmon stocked as smolts were mainly males. The multi‐sea‐winter (MSW) salmon entered the river annually within a fairly short time period from the beginning of the migration season, independent of their sex or origin. 1 SW males migrated into the river significantly later in the season than MSW males. The results indicate that the delayed opening of the fishing season in the Gulf of Bothnia is effective in reducing the harvest of MSW salmon at sea. However, as the timing of the ascent may vary by several weeks from year to year, the effect of this regulation bound to certain calendar days may also vary considerably from year to year.  相似文献   

8.
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.  相似文献   

9.
A large size variation amongst life histories for stream-dwelling Atlantic salmon Salmo salar was found and the relative effect of life histories on size varied over time. As early as December (age 0+ years), fish that later smolted at age 2+ years were significantly larger than fish that did not smolt at age 2+ years. In contrast, there were no mass differences at age 0+ years between fish that would mature or not at age 1+ years (October). The mass differences between smolts and non-smolts persisted until smolting, and differences between mature and immature fish first appeared in May (age 1+ years). Following September (age 1+ years), there was also a significant interaction between smolting and maturity. Previously mature and immature age 2+ year smolts were not significantly different in size, but immature age 2+ year non-smolts were much lighter than mature age 2+ year non-smolts. Based on mass differences, the apparent 'decision' to smolt occurred c . 5 months before (winter, age 0+ years) the decision to mature (late spring, age 1+ years). In addition to strong seasonal growth variation, sizes of freshwater Atlantic salmon were largely structured by the complex interaction between smolt-age and maturity.  相似文献   

10.
The change in life history of Atlantic salmon (Salmo salar L.) on the River Dee over the last 60 years is described. Over the last 60 years, salmon have shown a change in run timing, the majority currently entering the river between August and October compared with prior to June. This has coincided with a change in the sea age composition, which was dominated by multi-sea winter salmon prior to the 1980s after which the proportion of 1sea-winter fish increased until they now dominate the mature population. Growth rates of salmon in fresh water remained relatively stable until the mid-1980s and then increased. By the end of the 1990s juvenile salmon were, by the end of their first and second year, respectively, ∼60 and ∼19%, on average, larger than they were between the late 1930s and mid-1980s. This has been reflected in a change in the age composition of smolts where the mean smolt age has declined from ∼2 years prior to the 1980s to ∼1.6 years in the late 1990s. There was no observed trend in post-smolt (marine) growth for salmon. Size at return for 1SW salmon appeared stable while there is some evidence of an increase in mean length of 2SW salmon at the end of the 1990s. A steady state life history model was developed which suggests an increase in the instantaneous rate of mortality by 2.9% from 1.495 year−1 in 1937/1938 to 1.538 year−1 in 1967/1969 and by 21.6% to 1.870 year−1 in 1997/1999. This is considered to explain the shift in mean age at maturity from 5.2 to 4.8 to 3.9 years for the three periods examined. There is close agreement between the observed mean age at maturity and that predicted by the model suggesting optimal lifetime reproductive success. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

11.
Spawning migration timing of maiden Atlantic salmon Salmo salar and previous spawners was analysed in the catches in 1989–2004 in the large subarctic River Teno in the northernmost parts of Finland and Norway. The hypothesis was that the migration timing of previous spawners and their maiden counterparts is similar, with the migration timing similar between sexes. In most cases, however, previous spawners were observed to migrate into the River Teno and its tributaries earlier than their maiden counterparts. The difference in run timing was especially evident between maiden one-sea-winter (1SW) Atlantic salmon and the corresponding group of previous spawners [1S1, 1 year at sea (1) followed by first spawning (S) and reconditioning period of 1 year (1) at sea and second spawning run] for both sexes in the River Teno and in its two tributaries. The same was also evident between 2SW maiden and 2S1 previous spawning female Atlantic salmon in the River Teno. Females showed earlier spawning migration than males both in previous spawners and maiden Atlantic salmon. Different maiden sea-age classes also showed differences in run timing as multi-sea-winter fish (2–4SW) ascended earlier than 1SW fish but the timing of 1S1 and 2S1 previous spawning females coincided. The results suggest that run timing of Atlantic salmon may not be strictly genetically fixed as previous spawners ascend earlier than they did on their first spawning migration as maiden fish, and indicated that the closeness of the reconditioning area of postspawners to the river of origin resulted in an early ascent. Run timing of different sea-age groups has major management implications if the populations are heavily exploited with numerous fishing methods in different periods of the fishing season, as in the River Teno system.  相似文献   

12.
The abundance of returning adult Atlantic salmon Salmo salar, in the River Orkla in mid‐norway (1 sea‐winter, SW, fish) and River Hals in north Norway (1–3 SW fish), was tested against the early marine feeding and the seawater temperature experienced by their corresponding year classes of post‐smolts immediately after entry into the Trondheimsfjord (Orkla smolts, 22 years of data) and Altafjord (Hals smolts, 17 years of data). In both river–fjord systems, there was a significant positive correlation between the abundance of returning S. salar and the mean seawater temperature at the time of smolts descending to the sea. The number of 1SW fish reported caught in River Orkla was positively correlated to the proportion of fish larvae in the post‐smolt stomachs in Trondheimsfjord. The abundance of returning S.salar was, however, neither correlated to forage ratio (RF) nor other prey groups in post‐smolt stomachs in the two fjord systems. In the Altafjord, the post‐smolts fed mainly on pelagic fish larva (70–98%) and had a stable RF (0·009–0·023) over the 6 years analysed. In the Trondheimsfjord, however, there was a higher variation in RF (0·003–0·036), and pelagic fish larvae were dominant prey in only two (50 and 91%) of the 8 years analysed. These 2 years also showed the highest return rates of S. salar in River Orkla. These results demonstrate that the thermal conditions experienced by post‐smolts during their early sea migration may be crucial for the subsequent return rate of adults after 1–3 years at sea. Pelagic marine fish larvae seem to be the preferred initial prey for S. salar post‐smolts. As the annual variation in abundance of fish larvae is related to seawater temperature, it is proposed that seawater temperature at sea entry and the subsequent abundance of returning adult S. salar may be indirectly linked through variation in annual availability of pelagic fish larvae or other suitable food items in the early post‐smolt phase.  相似文献   

13.
  1. Wild Atlantic salmon populations have declined in many regions and are affected by diverse natural and anthropogenic factors. To facilitate management guidelines, precise knowledge of mechanisms driving population changes in demographics and life history traits is needed.
  2. Our analyses were conducted on (a) age and growth data from scales of salmon caught by angling in the river Etneelva, Norway, covering smolt year classes from 1980 to 2018, (b) extensive sampling of the whole spawning run in the fish trap from 2013 onwards, and (c) time series of sea surface temperature, zooplankton biomass, and salmon lice infestation intensity.
  3. Marine growth during the first year at sea displayed a distinct stepwise decline across the four decades. Simultaneously, the population shifted from predominantly 1SW to 2SW salmon, and the proportion of repeat spawners increased from 3 to 7%. The latter observation is most evident in females and likely due to decreased marine exploitation. Female repeat spawners tended to be less catchable than males by anglers.
  4. Depending on the time period analyzed, marine growth rate during the first year at sea was both positively and negatively associated with sea surface temperature. Zooplankton biomass was positively associated with growth, while salmon lice infestation intensity was negatively associated with growth.
  5. Collectively, these results are likely to be linked with both changes in oceanic conditions and harvest regimes. Our conflicting results regarding the influence of sea surface temperature on marine growth are likely to be caused by long‐term increases in temperature, which may have triggered (or coincided with) ecosystem shifts creating generally poorer growth conditions over time, but within shorter datasets warmer years gave generally higher growth. We encourage management authorities to expand the use of permanently monitored reference rivers with complete trapping facilities, like the river Etneelva, generating valuable long‐term data for future analyses.
  相似文献   

14.
The recapture rate of Atlantic salmon (Salmo salar L.) after river ascent was examined by the trapping and tagging of ascending spawners in the lower reaches of the Simojoki River, which flows into the northern Baltic Sea. In 1997 and 1998, altogether 825 Carlin‐tagged salmon were released to continue their upstream migration. Of these, 800 could be sexed and categorized as reared (91%) or wild (9%) salmon. In 1997, most of the ascending salmon were multi‐sea‐winter (MSW) fish, whereas in 1998 almost all were one‐sea‐winter (1SW) male grilse due to the late trapping season. About 10% of all tagged fish were recaptured, two‐thirds of which were caught in the river before their descent to the sea. There was no difference in the recapture rate between salmon of wild (8.5%) or reared (9.5%) origin, or between females (11.6%) and males (9.3%). Generalized linear models for data from 1997 showed that the recapture rate increased with length and age of females, but that the opposite was true for males. River fishing did not seem to remove proportionally more early ascending salmon than fish that ascended later.  相似文献   

15.
The relations between allozyme heterozygosity, relative date of first feeding and life history strategy in juvenile Atlantic salmon Salmo salar were examined using eggs obtained from a 400 family cross (20 male × 20 female adult Atlantic salmon). Multilocus heterozygosity, through its positive associations with the timing of first feeding and growth rate, was correlated with life history strategy in juvenile Atlantic salmon, albeit under genotype × environmental (temperature, food availability) regulation. Under hatchery conditions, a 10 day difference was observed in the relative date of first feeding between early and late first feeding Atlantic salmon. Early first feeding Atlantic salmon exhibited a significantly higher mean heterozygosity, grew faster at ambient water temperature (April to November) and a significantly higher proportion adopted the early freshwater maturation (age 0+ years, male fish) or early migrant (age 1+ years, mainly female fish) strategies compared to late first feeding Atlantic salmon. Elevated water temperatures over the winter (December to April, >10·5° C) provided additional growth opportunity allowing previously mature male parr (mainly early first feeders) and lower modal group parr (mainly late first feeders) to adopt the early migrant strategy by the following spring.  相似文献   

16.
Age at maturity is a key life‐history trait of most organisms. In anadromous salmonid fishes such as Atlantic Salmon (Salmo salar), age at sexual maturity is associated with sea age, the number of years spent at sea before the spawning migration. For the first time, we investigated the presence of two nonsynonymous vgll3 polymorphisms in North American Atlantic Salmon populations that relate to sea age in European salmon and quantified the natural variation at these and two additional candidate SNPs from two other genes. A targeted resequencing assay was developed and 1,505 returning adult individuals of size‐inferred sea age and sex from four populations were genotyped. Across three of four populations sampled in Québec, Canada, the late‐maturing component (MSW) of the population of a given sex exhibited higher proportions of SNP genotypes 54Thrvgll3 and 323Lysvgll3 compared to early‐maturing fish (1SW), for example, 85% versus 53% of females from Trinité River carried 323Lysvgll3 (nMSW = 205 vs. n1SW = 30; p < .001). However, the association between vgll3 polymorphism and sea age was more pronounced in females than in males in the rivers we studied. Logistic regression analysis of vgll3 SNP genotypes revealed increased probabilities of exhibiting higher sea age for 54Thrvgll3 and 323Lysvgll3 genotypes compared to alternative genotypes, depending on population and sex. Moreover, individuals carrying the heterozygous vgll3 SNP genotypes were more likely (>66%) to be female. In summary, two nonsynonymous vgll3 polymorphisms were confirmed in North American populations of Atlantic Salmon and our results suggest that variation at those loci correlates with sea age and sex. Our results also suggest that this correlation varies among populations. Future work would benefit from a more balanced sampling and from adding data on juvenile riverine life stages to contrast our data.  相似文献   

17.
Almost 50 assessments of British sea trout are available in the literature and the objective in this work is to examine variation in the parameters by which the fish are usually described and to discover biological criteria on which stocks may be classified. Eight statistics are common to the majority of stock evaluations: mean smolt age, proportion of finnock to spawn, mean age of a stock at first maturation, size achieved by the smolt at migration, rate of growth at sea, survival at sea, diversity of age categories in a stock and condition factor of sea-run fish. When the influence of each factor on the others is tested two characteristics emerge as being of key importance in the biology of adult sea-trout; the life expectancy and the weight: percentage previous spawners in a sample. The distribution of stocks is discussed in this context and two main groupings of British sea trout, corresponding geographically with the Irish sea and the Atlantic sea-board, are proposed.  相似文献   

18.
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life‐history pathways. Using an individual‐based demo‐genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life‐history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life‐history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.  相似文献   

19.
Ocean climate impacts on survivorship and growth of Atlantic salmon are complex, but still poorly understood. Stock abundances have declined over the past three decades and 1992–2006 has seen widespread sea surface temperature (SST) warming of the NE Atlantic, including the foraging areas exploited by salmon of southern European origin. Salmon cease feeding on return migration, and here we express the final growth condition of year‐classes of one‐sea winter adults at, or just before, freshwater re‐entry as the predicted weight at standard length. Two independent 14‐year time series for a single river stock and for mixed, multiple stocks revealed almost identical temporal patterns in growth condition variation, and an overall trend decrease of 11–14% over the past decade. Growth condition has fallen as SST anomaly has risen, and for each year‐class the midwinter (January) SST anomalies they experienced at sea correlated negatively with their final condition on migratory return during the subsequent summer months. Stored lipids are crucial for survival and for the prespawning provisioning of eggs in freshwater, and we show that under‐weight individuals have disproportionately low reserves. The poorest condition fish (~30% under‐weight) returned with lipid stores reduced by ~80%. This study concurs with previous analyses of other North Atlantic top consumers (e.g. somatic condition of tuna, reproductive failure of seabirds) showing evidence of major, recent climate‐driven changes in the eastern North Atlantic pelagic ecosystem, and the likely importance of bottom‐up control processes. Because salmon abundances presently remain at historical lows, fecundity of recent year‐classes will have been increasingly compromised. Measures of year‐class growth condition should therefore be incorporated in the analysis and setting of numerical spawning escapements for threatened stocks, and conservation limits should be revised upwards conservatively during periods of excessive ocean climate warming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号