首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

2.
Reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Forward extraction of lipase was found to be maximum using Tris buffer at pH 9.0 containing 0.10 M NaCl in aqueous phase and 0.20 M CTAB in organic phase consisting of isooctane, butanol and hexanol. In case of backward extraction, lipase was extracted from the organic phase to a fresh aqueous phase in 0.05 M potassium phosphate buffer (pH 7.0) containing 1.0 M KCl. The activity recovery, extraction efficiency and purification factor of lipase were found to be 82.72%, 40.27% and 4.09-fold, respectively. The studies also indicated that the organic phase recovered after back extraction could be reused for the extraction of lipase from crude extract.  相似文献   

3.
The extraction of lactoperoxidase (EC 1.11.1.7) from whey was studied using single step reverse micelles‐assisted extraction and compared with reverse micellar extraction. The reverse micelles‐assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25‐fold, respectively. Whereas reverse micelles‐assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39‐fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) profiles also evidenced that higher purification was obtained in reverse micelles‐assisted extraction as compared of reverse micellar extracted lactoperoxidase. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
A new type of liquid emulsion membrane containing reversed micelles for protein extraction is introduced. A three-step extraction mechanism is proposed including solubilization, transportation, and release of the protein. The surfactants Span80 and sodium di(2-ethylhexyl)sulfosuccinate (AOT) are used to stabilize the membrane phase and to build up the reversed micelles, respectively. alpha-Chymotrypsin was used as the model protein. The condition in the internal phase inhibits the solubilization process of the already extracted protein back into reversed micelles. Concerning the solubilization, we studied the influence of the AOT concentration in the membrane phase and the ionic strength in the external phase. The extraction rate increases with higher AOT concentration and decreases with higher ionic strength. Using NaCl in the external phase led to better extraction results than using KCl. Maximum extraction results of 98% into the membrane phase and 65% into the internal phase were obtained. This condition retained 60% of the enzyme's activity. The concentration of KCl in the internal phase does not affect the solubilization rate but the release into the internal phase. By this way the ionic strength in the internal phase is used as the driving force for the protein release. The solubilization process is much faster than the diffusion and the releasing process, as found by variation of the extraction time. The influence of the operating conditions on the membrane swelling is also discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 267-273, 1997.  相似文献   

5.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

6.
The higher order structure of Mucor miehei lipase and micelle size in a cationic cetyltrimethylammonium bromide (CTAB) reverse micellar system was investigated. Circular dichroic (CD) measurement revealed that the lipase far-UV CD spectra changed markedly, going from buffer solution to the reverse micellar solution, and were very similar for any organic solvent used. The ellipticity of the solubilized lipase in the far-UV region markedly decreased with increasing water content (W(0): molar ratio of water to CTAB), indicating that the secondary structure of lipase changed with the water content. The linear correlation between the W(0) and the micelle size was obtained by measuring dynamic light scattering. From the linear correlation between the micelle size and W(0), the higher order structure of the solubilized lipase appears to be affected directly by the micellar interface. The species and concentration of alcohol as a cosurfactant had an inferior effect on lipase structure. Especially, at ratios of 1-pentanol to CTAB of less than 8, the secondary and tertiary structures of lipase were preserved in the reverse micelles. The CTAB concentration had little effect on the lipase structure in the micelles. The catalytic activity of the lipase solubilized in the CTAB reverse micelles increased with increasing the W(0).  相似文献   

7.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

8.
Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid–liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2‐ethyl‐hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij‐30, Tween‐85, Span‐85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij‐30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween‐85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40–45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
反胶束萃取技术分离胰激肽原酶   总被引:5,自引:0,他引:5  
研究了用十六烷基三甲基溴化铵(CTAB)/正己醇/正辛烷反胶束溶液萃取和反萃取商业用胰激肽原酶时,水相pH值、离子强度和种类、CTAB浓度和助表面活性剂浓度等因素对分离效率的影响,并从反胶束微观结构给予解释。结果表明:[CTAB]=0.02 mol•L-1,正己醇/正辛烷(V/V)=1:5,萃取pH=9.0,反萃pH=7.0,萃取[KBr]=0.1 mol•L-1,反萃[KBr]=1.5 mol•L-1,反萃取加15%乙醇(V/V)时,萃取率接近100%,反萃取活性回收得率在80%以上。商业用酶的纯化倍数最高为1.97倍,粗酶为7.15倍,且粗酶纯化后比活在200U/mg以上,电泳分析证实了纯化效果,显示了很好的工业前景。  相似文献   

10.
An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n-hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3-3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl(2). Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery.  相似文献   

11.
Studies on the batch extraction of lactic acid using an emulsion liquid membrane system are reported. The membrane phase consists of the tertiary amine carrier Alamine 336 and the surfactant Span 80 dissolved in n-heptane/paraffin and aqueous solutions of sodium carbonate in the internal phase. The effects of internal phase reagent, extraction temperature, and initial external phase pH on the extraction efficiency and the emulsion swelling are examined. A statistical factorial experiment on extraction from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the extraction system from a broth. The extraction efficiency from the fermentation broth is found to be lower as compared to aqueous solutions of pure lactic acid. The effect of pH and the presence of other ionic species on selectivity are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

13.
Abstract

The β-amylase was encapsulated in emulsion liquid membrane (ELM), which acted as a reactor for conversion of starch to maltose. The membrane phase was consisted of surfactant (span 80), stabilizer (polystyrene), carrier for maltose transport (methyl cholate) and solvent (xylene). The substrate starch in feed phase entered into the internal phase by the process of diffusion and hydrolyzed to maltose by encapsulated β-amylase. Methyl cholate present in the membrane acts as a carrier for the product maltose, which helps in transport of maltose to feed phase from internal aqueous phase. The residual activity of β-amylase after the five-reaction cycle was found to decrease to ~70%, which indicated possibility to recycle the components of the emulsion and enzyme. The pH and temperature of the encapsulated enzyme were found to be optimum at 5.5 and 60?°C, respectively. The novelty of the present work lies in the development of Enzyme Emulsion Liquid Membranes (EELM) bioreactor for the hydrolysis of starch into maltose mediated by encapsulated β-amylase. The attempt has been made for the first time for the successful encapsulation of β-amylase into EELM. The best results gave the highest residual enzyme activity (94.1%) and maltose production (29.13?mg/mL).  相似文献   

14.
FTIR study of horseradish peroxidase in reverse micelles   总被引:2,自引:0,他引:2  
Fourier transform infrared (FTIR) method was used to study the secondary structures of horseradish peroxidase (HRP) in aqueous solution and in reverse micelles for the first time. Results indicated that the structure of HRP in sodium bis(2-ethylhexy)sulfosuccinate (AOT) reverse micelles was close to that in aqueous solution. In cetyltrimethylammonium bromide (CTAB) and sodium dodecylfate (SDS) reverse micelles the position of some bands changed. Results indicated that the secondary structure had a close relationship with the surfactant species of the reverse micelles. Among the three types of reverse micelles, the system of AOT reverse micelles was probably the most beneficial reaction media to HRP.  相似文献   

15.
The study of fluorescence quenching of the fluorophores allows the localization of the alkaloids (harmane and harmine) in the micelles (SDS, CTAB, Brij-35) to be established. In aqueous micellar solutions (SDS and Brij-35) at pH 13.0, emission corresponding to the neutral or zwitterionic forms can be observed. In the presence of CTAB (pH = 13.0) it was possible to observe the emission of anionic form. These species are not present in buffered aqueous solutions at these pH values. Bromide ion was added to the different surfactant solutions and the quenching effect was studied according to the Stern-Volmer equation. In the presence of SDS the quenching effect is considerably reduced compared to the aqueous solutions without surfactants, while for Brij-35 micelles were similar to those observed in homogeneous aqueous solution. For CTAB micelles a notable fluorescence quenching was observed for the different pH values studied. The fluorescence quenching studies show that the neutral species are associated inside the micelles, instead of the ionic species (cationic, zwitterionic or anionic) remaining on the surface of the micelles. The anionic surface of SDS micelles prevents the quenching effect by anionic quenchers for both neutral and charged species.  相似文献   

16.
Downstream processing of lipase involving reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. Effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Complex interaction of salt concentration (0.05∼0.15M), surfactant concentration (0.10∼0.30 M), and pH (6.0∼9.0) for forward extraction, as well as, salt concentration (0.5∼1.5 M) and pH (6.0∼9.0) for backward extraction have been studied using response surface methodology. Optimum processing conditions, namely, salt concentration 0.16M, surfactant concentration 0.20 M, and pH 9.0 for forward extraction, as well as, salt concentration 0.80 M and pH 7.23 for backward extraction, fulfill the conditions to obtain activity recovery of lipase ≥78% and purification factor of lipase ≥4.0. The study demonstrated that response surface methodology can be used for optimization of the conditions for reverse micellar extraction of lipase.  相似文献   

17.
Reverse micellar systems of CTAB/isooctane/hexanol/butanol and AOT/isooctane are used for the extraction and primary purification of bromelain from crude aqueous extract of pineapple wastes (core, peel, crown and extended stem). The effect of forward as well as back extraction process parameters on the extraction efficiency, activity recovery and purification fold is studied in detail for the pineapple core extract. The optimized conditions for the extraction from core resulted in forward and back extraction efficiencies of 45% and 62%, respectively, using reverse micellar system of cationic surfactant CTAB. A fairly good activity recovery (106%) and purification (5.2-fold) of bromelain is obtained under these conditions. Reverse micellar extraction from peel, extended stem and crown using CTAB system resulted in purification folds of 2.1, 3.5, and 1.7, respectively. Extraction from extended stem using anionic surfactant AOT in isooctane did not yield good results under the operating conditions employed.  相似文献   

18.
Das D  Das D  Das PK 《Biochimie》2008,90(5):820-829
This work reports the significant enhancement in performance of interfacially active enzymes, Chromobacterium viscosum (CV) lipase and horseradish peroxidase (HRP) in mixed reverse micelles of cetyltrimethylammonium bromide (CTAB) and imidazolium-based amphiphiles having varying tail lengths. Lipase activity in these mixed systems was always higher than that in the individual cationic reverse micelles of CTAB or any imidazolium surfactant, highest being observed in the mixed system of CTAB (50 mM) and 6 (1-tetradecyl-3-methyl imidazolium bromide, 40 mM)/water/isooctane/n-hexanol (0.24 M), second-order rate constant, k2=1301+/-5 cm3 g(-1)s(-1), approximately 200% higher compared to that in CTAB and approximately 65% more than the most popular AOT-microemulsion. Activity increased with concentration of imidazolium surfactant and also with its alkyl tail length. To have a more profound view on the structure-activity relationship, CTAB was replaced by cetyltriethylammonium bromide (CTEAB) and cetyltripropylammonium bromide (CTPAB) with subsequent increase in the headgroup size. The generalized influence of these mixed cationic systems on surface-active enzyme was also verified using HRP, where the activity improved approximately 100%. This enhancement in enzyme activity is presumably due to the activating effect of the imidazolium cation in the enzymatic reactions by improving the nucleophilicity of interfacial water in vicinity of enzyme through hydrogen bonding.  相似文献   

19.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

20.
Di(2‐ethylhexyl) phosphoric acid (HDEHP) was used as a transition metal ion chelator and introduced to the nonionic reverse micellar system composed of equimolar Triton X‐45 and Span 80 at a total concentration of 30 mmol/L. Ni(II) ions were chelated to the HDEHP dimers in the reverse micelles, forming a complex denoted as Ni(II)R2. The Ni(II)‐chelate reverse micelles were characterized for the purification of recombinant hexahistidine‐tagged enhanced green fluorescent protein (EGFP) expressed in Escherichia coli. The affinity binding of EGFP to Ni(II)R2 was proved by investigation of the forward and back extraction behaviors of purified EGFP. Then, EGFP was purified with the affinity reverse micelles. It was found that the impurities in the feedstock impeded EGFP transfer to the reverse micelles, though they were little solubilized in the organic phase. The high specificity of the chelated Ni2+ ions toward the histidine tag led to the production of electrophoretically pure EGFP, which was similar to that purified by immobilized metal affinity chromatography. A two‐stage purification by the metal‐chelate affinity extraction gave rise to 87% recovery of EGFP. Fluorescence spectrum analysis suggests the preservation of native protein structure after the separation process, indicating the system was promising for protein purification. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号