首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Information about historical animal or plant abundance often either explicitly or implicitly informs current conservation practice. If it can be shown that an organism was not historically abundant in a region, its conservation importance may be downgraded. In contrast to abundant archaeological support for historic importance of salmon in the Pacific Northwest, historic abundance of Atlantic salmon in New England has been called into question based on the rarity of salmon bones in archaeological sites. These data have been used to argue that the importance of salmon to the region has been exaggerated and that expensive restoration efforts in some rivers should be reconsidered. Here, we argue that lack of archaeological bone fragment abundance does not make a convincing case against historical Atlantic salmon abundance in New England for three primary reasons. First, salmon bones were rare or absent at sites that still have large salmon runs. Second, the lack of salmonid bones in general at archaeological sites suggests poor preservation and/or recovery of bone for these species relative to bones of other fishes. Third, given the presence of large numbers of non-salmonid anadromous fish in the site areas where people fished and deposited fish bones, power to detect salmon bones in studies to date may have been generally low. We present reliable historical accounts that help build a convincing case that salmon were historically abundant in New England rivers. We suggest that rarity of salmon bones in the existing archaeological data should not have unwarranted influence on present-day conservation decision-making in New England.  相似文献   

2.
Aim Variation of life history traits along spatial gradients is poorly understood in invasive species and particularly in freshwater fish. We aimed to examine life history variation in a highly invasive fish (Gambusia holbrooki) along latitudinal and upstream–downstream river gradients and to assess the effects of age on this variation. We hypothesized similar responses in populations inhabiting environments more favourable to this species (lower latitudes and lower reaches of rivers). Location European rivers from southern Spain to southern France. Methods We sampled mosquitofish from the lowest reaches of ten river basins along 6° of latitude in the Mediterranean region and seven sites along the upstream–downstream gradient in three of the rivers. We examined abundance, population structure, size‐at‐age and other life history traits along these gradients. Results As hypothesized, lower reaches and lower latitudes both resulted in higher reproductive effort and lower body condition of mosquitofish. However, these patterns explained low per cent variation, were nonlinear and strongly depended on fish age. Independently of fish size, age groups differed in reproductive effort, in the gonadal weight–size relationship and its variation along spatial gradients. Mean size‐at‐age (or overall body size) did not vary with latitude (so the intra‐specific version of Bergmann’s rule or its converse does not apply) and in contrast increased upstream in rivers. Main conclusions Our findings suggest that for life history traits of freshwater organisms, river longitudinal variation plays a role as important as climate, with often differential effects. Our results also illustrate the poor knowledge of spatial variation of many life history traits, which precludes the understanding and prediction of biological invasions in a rapidly changing world.  相似文献   

3.
In‐stream restoration often aims at increasing the availability of the stream habitat suitable for salmonid fishes, thus creating potential for increased fish abundance. We assessed the success of in‐stream restoration of River Kiiminkijoki, northern Finland, by combining River2D habitat hydraulic modeling and fish density monitoring at the same sites, with data from multiple restored and reference reaches for 3 years both before and after restoration. We modeled the effects of restoration on the area suitable (weighted usable area, WUA) for juvenile Atlantic salmon from post‐hatching to age‐1 fish. Wetted width in the restored reaches increased by 8.1% on average compared with only ?0.2% change in the reference reaches. Habitat time series across 10 years showed significant increases in the amount of suitable habitat under summer conditions for both age‐0 and age‐1 salmon. However, improvement of overwintering habitats was marginal or nonexistent. Densities of age‐1 salmon showed no response to restoration. Low river discharge during the winter was correlated with low salmon densities the following summer. It thus appears that variability in wintertime discharge, and associated high interannual variation of WUA values, overrode the almost 20% increase in average post‐ versus pre‐restoration summertime WUA. Our study shows that the combination of hydraulic modeling and biological monitoring is a promising approach to stream restoration assessment.  相似文献   

4.
Mean summer water temperatures in the Fraser River (British Columbia, Canada) have increased by ~1.5 °C since the 1950s. In recent years, record high river temperatures during spawning migrations of Fraser River sockeye salmon (Oncorhynchus nerka) have been associated with high mortality events, raising concerns about long‐term viability of the numerous natal stocks faced with climate warming. In this study, the effect of freshwater thermal experience on spawning migration survival was estimated by fitting capture–recapture models to telemetry data collected for 1474 adults (captured in either the ocean or river between 2002 and 2007) from four Fraser River sockeye salmon stock‐aggregates (Chilko, Quesnel, Stellako‐Late Stuart and Adams). Survival of Adams sockeye salmon was the most impacted by warm temperatures encountered in the lower river, followed by that of Stellako‐Late Stuart and Quesnel. In contrast, survival of Chilko fish was insensitive to the encountered river temperature. In all stocks, in‐river survival of ocean‐captured sockeye salmon was higher than that of river‐captured fish and, generally, the difference was more pronounced under warm temperatures. The survival–temperature relationships for ocean‐captured fish were used to predict historic (1961–1990) and future (2010–2099) survival under simulated lower river thermal experiences for the Quesnel, Stellako‐Late Stuart and Adams stocks. A decrease of 9–16% in survival of all these stocks was predicted by the end of the century if the Fraser River continues to warm as expected. However, the decrease in future survival of Adams sockeye salmon would occur only if fish continue to enter the river abnormally early, towards warmer periods of the summer, as they have done since 1995. The survival estimates and predictions presented here are likely optimistic and emphasize the need to consider stock‐specific responses to temperature and climate warming into fisheries management and conservation strategies.  相似文献   

5.
The study was undertaken on three adjacent rivers in NW Ireland, on one of which an Atlantic salmon Salmo salar freshwater juvenile rearing unit is situated. Two markers which distinguished farm and wild populations were used. An Ava II-B RFLP in the ND1 region of mtDNA was at a frequency of 0.58 in the farm strain but absent in the wild populations. Allele E at minisatellite locus Ssa- A45/2/l was at a frequency of 0.91 in farm samples, but at a maximum of 0.41 in the populations in the two rivers adjacent to the one with the juvenile rearing unit. The farm strain showed a significant reduction in mean heterozygosity (0.281 ± 0.057), over three minisatellite loci examined, compared to wild samples (0.532 ± 0.063). The occurrence of farm genotypes and the independent occurrence of mtDNA and minisatellite markers in several parr samples from the river indicated that escaped juvenile salmon completed their life cycle, bred and interbred with native fish, upon their return to the river. Escaped fish homed accurately, as adults, to the site of escape, i.e. the area adjacent to the hatchery outflow in the upstream part of the river. Breeding of males in the lower part of the river was also indicated but this could have been due to mature male parr which had moved downstream. The return of adults of farm origin to the river to breed was indicated by the presence of the Ava II-B haplotype in adults netted in the estuary.  相似文献   

6.
Fisheries‐induced evolution can change the trajectory of wild fish populations by selectively targeting certain phenotypes. For important fish species like Atlantic salmon, this could have large implications for their conservation and management. Most salmon rivers are managed by specifying an angling season of predetermined length based on population demography, which is typically established from catch statistics. Given the circularity of using catch statistics to estimate demographic parameters, it may be difficult to quantify the selective nature of angling and its evolutionary impact. In the River Etne in Norway, a recently installed trap permits daily sampling of fish entering the river, some of which are subsequently captured by anglers upstream. Here, we used 31 microsatellites to establish an individual DNA profile for salmon entering the trap, and for many of those subsequently captured by anglers. These data permitted us to investigate time of rod capture relative to river entry, potential body size‐selective harvest, and environmental variables associated with river entry. Larger, older fish entered the river earlier than smaller, younger fish of both sexes, and larger, older females were more abundant than males and vice versa. There was good agreement between the sizes of fish harvested by angling, and the size distribution of the population sampled on the trap. These results demonstrate that at least in this river, and with the current timing of the season, the angling catch reflects the population's demographics and there is no evidence of size‐selective harvest. We also demonstrated that the probability of being caught by angling declines quickly after river entry. Collectively, these data indicate that that the timing of the fishing season, in relation to the upstream migration patterns of the different demographics of the population, likely represents the most significant directional evolutionary force imposed by angling.  相似文献   

7.

Background

Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland.

Methods

One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses.

Results

Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28).

Conclusions

Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0121-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first “in‐depth” investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents–White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.  相似文献   

9.
Aim To estimate population extinction rates within freshwater fish communities since the fragmentation of palaeo‐rivers due to sea level rise at the end of the Pleistocene; to combine this information with rates estimated by other approaches (population surveys, fossil records); and to build an empirical extinction–area relationship. Location Temperate rivers from the Northern Hemisphere, with a special focus on rivers discharging into the English Channel, in north‐western France. Methods (1) French rivers. We used a faunal relaxation approach to estimate extinction rates in coastal rivers after they became isolated by the sea level rise. Tributaries within the Seine were used to build a species–area relationship for a non‐fragmented river system to predict species richness in coastal rivers before their fragmentation. (2) Other rivers. Extinction rates obtained for four other Holarctic river systems fragmented at the end of the Pleistocene, the fragmented populations of one salmonid species (Japan) and the fossil records from the Mississippi Basin were included in the study. Results (1) French rivers. Within strictly freshwater fish species, rare and/or habitat specialist species were the most affected by fragmentation. In contrast, euryhaline species were not affected. A negative relationship between extinction rate and river basin size was observed. (2) Other rivers. Our study established a common scaling relationship for freshwater fish population extinction rates that spans seven orders of magnitude in river basin size. Main conclusions This study strongly suggests that extinctions of fish populations occurred within French coastal rivers after they became isolated 8000 years ago. The patterns observed at regional and inter‐continental scales are consistent with the expectation that large populations are less prone to extinction than small ones, resulting in a strong extinction–area relationship coherent over a large spatio‐temporal scale. Our study is the first multi‐scale quantitative assessment of background extinction patterns for freshwater fishes.  相似文献   

10.

Background

Anadromous migratory fish species such as Atlantic salmon (Salmo salar) have significant economic, cultural and ecological importance, but present a complex case for management and conservation due to the range of their migration. Atlantic salmon exist in rivers across the North Atlantic, returning to their river of birth with a high degree of accuracy; however, despite continuing efforts and improvements in in-river conservation, they are in steep decline across their range. Salmon from rivers across Europe migrate along similar routes, where they have, historically, been subject to commercial netting. This mixed stock exploitation has the potential to devastate weak and declining populations where they are exploited indiscriminately. Despite various tagging and marking studies, the effect of marine exploitation and the marine element of the salmon lifecycle in general, remain the "black-box" of salmon management. In a number of Pacific salmonid species and in several regions within the range of the Atlantic salmon, genetic stock identification and mixed stock analysis have been used successfully to quantify exploitation rates and identify the natal origins of fish outside their home waters - to date this has not been attempted for Atlantic salmon in the south of their European range.

Results

To facilitate mixed stock analysis (MSA) of Atlantic salmon, we have produced a baseline of genetic data for salmon populations originating from the largest rivers from Spain to northern Scotland, a region in which declines have been particularly marked. Using 12 microsatellites, 3,730 individual fish from 57 river catchments have been genotyped. Detailed patterns of population genetic diversity of Atlantic salmon at a sub-continent-wide level have been evaluated, demonstrating the existence of regional genetic signatures. Critically, these appear to be independent of more commonly recognised terrestrial biogeographical and political boundaries, allowing reporting regions to be defined. The implications of these results on the accuracy of MSA are evaluated and indicate that the success of MSA is not uniform across the range studied; our findings indicate large differences in the relative accuracy of stock composition estimates and MSA apportioning across the geographical range of the study, with a much higher degree of accuracy achieved when assigning and apportioning to populations in the south of the area studied. This result probably reflects the more genetically distinct nature of populations in the database from Spain, northwest France and southern England. Genetic stock identification has been undertaken and validation of the baseline microsatellite dataset with rod-and-line and estuary net fisheries of known origin has produced realistic estimates of stock composition at a regional scale.

Conclusions

This southern European database and supporting phylogeographic and mixed-stock analyses of net samples provide a unique tool for Atlantic salmon research and management, in both their natal rivers and the marine environment. However, the success of MSA is not uniform across the area studied, with large differences in the relative accuracy of stock composition estimates and MSA apportioning, with a much higher degree of accuracy achieved when assigning and apportioning to populations in the south of the region. More broadly, this study provides a basis for long-term salmon management across the region and confirms the value of this genetic approach for fisheries management of anadromous species.  相似文献   

11.
The study addresses the effect of hatchery rearing on morphological variation and developmental stability of Atlantic salmon parr from North‐West Russia. Totally, we collected nine samples. Four wild samples were collected from each of the rivers Kola, Umba, Keret’ and Shuia. Five samples of hatchery‐reared parr were the first‐generation progeny of wild adults from these rivers reared separately at the four hatcheries (one hatchery was represented by two samples). Ten meristic and 48 morphometric cranial characters were analysed. We studied the morphological divergence between wild and hatchery fishes of the same river of origin. To analyze developmental stability we used fluctuating asymmetry (random deviations from perfect bilateral symmetry). It was found that hatchery‐reared parr significantly differ from wild parr in both meristic characters and the shape of cranial bones. Different hatcheries caused similar effect on morphological variation in all populations. Fluctuating asymmetry in morphometric characters was significantly higher in hatchery fish than in wild from the Shuia River, indicating a higher level of developmental instability. However, wild parr from the Keret’ River had significantly higher fluctuating asymmetry than cultivated parr of the same origin, possible due to a high infection pressure of the parasite Gyrodactylus salaris Malmberg which has led to significant decline of the wild salmon population in this river, or from genetic changes caused by cultivation. The obtained results indicate a notable effect of hatchery environment on Atlantic salmon’s phenotype.  相似文献   

12.
Changes in the isotopic composition (δ13C and δ15N) in biofilm, macro‐invertebrates and resident salmonids were used to characterize temporal dynamics of marine derived nutrients (MDNs) incorporation between stream reaches with and without MDN inputs. Five Atlantic rivers were chosen to represent contrasting MDN subsidies: four rivers with considerable numbers of anadromous fishes; one river with little MDN input. Rainbow smelt Osmerus mordax, alewife Alosa pseudoharengus, sea lamprey Petromyzon marinus and Atlantic salmon Salmo salar, were the primary anadromous species for the sampled rivers. Regardless of the spatial resolution or the pathway of incorporation, annual nutrient pulses from spawning anadromous fishes had a positive effect on isotopic enrichment at all trophic levels (biofilm, 1·2–5·4‰; macro‐invertebrates, 0·0–6·8‰; fish, 1·2–2·6‰). Community‐wide niche space shifted toward the marine‐nutrient source, but the total ecological niche space did not always increase with MDN inputs. The time‐integrated marine‐nutrient resource contribution to the diet of S. salar parr and brook trout Salvelinus fontinalis ranged between 16·3 and 36·0% during anadromous fish‐spawning periods. The high degree of spatio‐temporal heterogeneity in marine‐nutrient subsidies from anadromous fishes lead to both direct and indirect pathways of MDN incorporation into stream food webs. This suggests that organisms at many trophic levels derive a substantial proportion of their energy from marine resources when present. The current trend of declining anadromous fish populations means fewer nutrient‐rich marine subsidies being delivered to rivers, diminishing the ability to sustain elevated riverine productivity.  相似文献   

13.
  1. Understanding the effects of density-dependent and density-independent factors on recruitment is often inhibited by difficulties quantifying their relative contributions in highly variable recruitment data. Use of data-driven statistical methods with data that include one or more extreme recruitment events could help overcome these difficulties.
  2. Juvenile Atlantic salmon and trout abundances in Wales have declined over the last 2 decades, and 2016 was a notably poor recruitment year in rivers around southern Europe, including England and Wales. The 2016 recruitment crash coincided with extreme winter weather conditions, leading to speculation that unusually warm temperatures and high flows adversely affect salmonid recruitment and caused the 2016 crash, although this remains untested.
  3. We developed data-driven statistical models to: (1) describe juvenile salmonid recruitment from density-dependent and density-independent factors; and (2) assess whether the density-independent factors probably contributed to the 2016 salmon recruitment crash. We compiled salmon and trout young-of-year juvenile abundances from electrofishing surveys, egg deposition estimates and river flow and air temperature data from 2001–2017 for seven Welsh rivers, broadly representative of rivers around Wales. We used river flow and air temperature data to derive ecologically and behaviourally meaningful density-independent explanatory variables.
  4. Salmonid recruitment in Wales was best described using density-dependent and density-independent factors, especially for salmon: after accounting for a concave relationship with egg deposition, salmon juvenile abundance was reduced under (1) warmer spawning temperatures that might inhibit spawning, and (2) higher flood frequencies during pre-emergence and emergence that might washout eggs or alevins. Results were less clear for trout, perhaps because they are behaviourally more plastic.
  5. Our findings provide empirical support for general and predictable effects of temperature and flow during spawning and emergence on salmonid—especially salmon—recruitment in Wales. Furthermore, we suggest that the 2016 salmon recruitment crash was caused—in part—by particularly inclement spawning and emergence conditions, which could be more common under future climate change. Our findings suggest that future salmonid stock assessment models could include the effects of density-independent variables on recruitment to improve their predictive power.
  相似文献   

14.
Young Atlantic salmon, Salmo salar , brown trout, Salmo trutta , and Arctic char, Salvelinus alpinus , from eight rivers in North and Mid Norway were examined for Gyrodactylus. The fish were collected from 1975 to 1980. A Gyrodactylus salaris type was observed infecting salmon from six of these rivers. No trout or char were infected. A high frequency and intensity of infection of salmon were observed in all but one of the rivers surveyed. In the Saltdalselva, only one specimen of Gyrodactylus infecting one fish was observed. No subsequent mortality of salmon was observed in this river while there were signs of a high mortality of salmon in the other rivers. The salmon parr were more frequently attacked than the fry, the mortality of salmon seemed to have happened in most of the rivers one year after the first observations of Gyrodactylus were made. The mortality of salmon and the high infection rate of Gyrodactylus in these rivers appears unique, and as far as known to the authors there are no other described cases of mortality due to Gyodactylus in Atlantic salmon in natural waters. The reasons for the outbreak of Gyrodactylus in these rivers are not known. Two theories are discussed: one that the fish were weakened by environmental factors and the other that Gyrodactylus was introduced from some of the infected salmon hatcheries in Scandinavia.  相似文献   

15.
The structure of food webs along river networks   总被引:1,自引:0,他引:1  
Do changes in the species composition of riverine fish assemblages along river networks lead to predictable changes in food‐web structure? We assembled empirical “fish‐centered” river food webs for three rivers located along a latitudinal gradient in the South Saskatchewan River Basin (SSRB) that differ in land‐use impacts and geomorphology but flow through similar mountain, foothill, and prairie physiographic regions. We then calculated 17 food‐web properties to determine whether the nine river food webs differed according to physiographic region or river sub‐basin. There were no statistically significant differences in the 17 food‐web properties calculated among the rivers. In contrast, fish species richness, connectance, the proportion of herbivores, and the proportion of cannibals changed longitudinally along the river network. Our results suggest that regional changes in river geomorphology and physicochemistry play an important role in determining longitudinal variation in food‐web properties such as fish species richness and connectance. In contrast, the overall structure of river food webs may be relatively similar and insensitive to regional influences such as zoogeography. Further explorations of river and other food webs would greatly illuminate this suggestion.  相似文献   

16.
Aggregate hatchery production of Pacific salmon in the Kamchatka region of the Russian Federation is very low (< 0.5% of total harvest, with five hatcheries releasing approximately 41 M juvenile salmon annually), but contributions in certain rivers can be substantial. Enhancement programs in these rivers may strongly influence fitness and production of wild salmon. In this paper we document significant divergence in demographic traits in hatchery salmon populations in the Bolshaya River and we estimate the proportion of hatchery chum salmon in the total run in the Paratunka River to demonstrate the magnitude of enhancement in this system. We observed a reduction in the expression of life history types in hatchery populations (ranging from 1 to 9 types) compared to wild populations (17 types) of sockeye salmon in the Bolshaya River. We found similar trends in Chinook salmon in the same river system. This reduced life history diversity may make these fish less resilient to changes in habitat and climate. We estimate hatchery chum salmon currently contribute 17-45% to the natural spawning population in the Paratunka River. As hatchery fish increase in numbers at natural spawning sites, this hatchery production may affect wild salmon production. It is important to investigate the risk of introgression between hatchery and wild salmon that can lead to reduction in salmon fitness in Kamchatka rivers, as well as the potential of ecological interactions that can have consequences on status of wild salmon and overall salmon production in this region.  相似文献   

17.
1. Genetic variation at five microsatellite loci was analysed in a collection of scales (1970–97) sampled from Atlantic salmon adults returning to the Nivelle River (South France).
2. Native and foreign fish (from an allochthonous Scottish stock introduced into the river to increase population size) were clearly identified as all foreign individuals released in the river were physically marked.
3. Introgression of foreign genes into the native gene pool has occurred, although the reproductive success of foreign Atlantic salmon in the wild was lower than that of native individuals.
4. The utility of old scale samples for investigating the impact of foreign stocking on wild fish populations is demonstrated in this work.  相似文献   

18.
Genetic studies on serum transferrins in Atlantic salmon   总被引:2,自引:0,他引:2  
Published and unpublished data on genetic variation at the transferrin locus ( TF *) in Atlantic salmon from rivers in eastern North America sampled from 1968 to 1970 were reanalysed and compared with data for samples collected in 1998 from nine of the same rivers. Genetic differentiation among rivers was highly significant as was spatial differentiation among tributary samples within the Miramichi River system, the largest rivers studied. Comparison of allele frequencies in rivers also sampled in 1998 show no overall evidence of significant genetic change after 30 years, spanning 9 generations. The results strongly support the stability of the patterns of spatial genetic differentiation and support the occurrence in Atlantic salmon of reproductive isolation among rivers and among tributaries within large river systems.  相似文献   

19.
Disentangling the effects of natural environmental features and anthropogenic factors on the genetic structure of endangered populations is an important challenge for conservation biology. Here, we investigated the combined influences of major environmental features and stocking with non‐native fish on the genetic structure and local adaptation of Atlantic salmon (Salmo salar) populations. We used 17 microsatellite loci to genotype 975 individuals originating from 34 French rivers. Bayesian analyses revealed a hierarchical genetic structure into five geographically distinct clusters. Coastal distance, geological substrate and river length were strong predictors of population structure. Gene flow was higher among rivers with similar geologies, suggesting local adaptation to geological substrate. The effect of river length was mainly owing to one highly differentiated population that has the farthest spawning grounds off the river mouth (up to 900 km) and the largest fish, suggesting local adaptation to river length. We detected high levels of admixture in stocked populations but also in neighbouring ones, implying large‐scale impacts of stocking through dispersal of non‐native individuals. However, we found relatively few admixed individuals suggesting a lower fitness of stocked fish and/or some reproductive isolation between wild and stocked individuals. When excluding stocked populations, genetic structure increased as did its correlation with environmental factors. This study overall indicates that geological substrate and river length are major environmental factors influencing gene flow and potential local adaptation among Atlantic salmon populations but that stocking with non‐native individuals may ultimately disrupt these natural patterns of gene flow among locally adapted populations.  相似文献   

20.
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern‐flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western‐flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery‐reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号