首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Nine flavonoids including two new myricetin derivatives, myricetin 3′,4′-dimethyl ether and myricetin 3,3′, 4′-trimethyl ether, were obtained from Haplopappus integerrimus var. punctatus. The known compounds are quercetin 7,3′-dimethyl ether, querectin 3,3′-dimethyl ether, isorhamnetin, quercetin 3,7-dimethyl ether, quercetin 3-methyl ether, quercetin and quercetin 3-β-d-glucoside.  相似文献   

2.
Polyphenols of Intsia heartwoods   总被引:2,自引:0,他引:2  
Robinetin is the main polyphenol of the heartwood of Intsia bijuga and is accompanied by smaller amounts of 3,5,4′-tri- and 3,5,3′,4′-tetra-hydroxystilbenes, dihydromyricetin, myricetin and naringenin. The wood contains large amounts of water soluble polymers including leucocyanidin. The stilbenes are absent from the sapwood. Samples of I. bijuga and I. palembanica from several countries revealed differences in composition.  相似文献   

3.
HPLC and chemical analyses of the flavonoids in culms of 11 Chondropetalum species divide the genus into two groups: seven, with glycosides of myricetin larycitin and syringetin; and four, with glycosides of kaempferol, quercetin, gossypetin, gossypetin 7-methyl ether and herbacetin 4′-methyl ether. This chemical dichotomy is correlated with anatomical differences and confirms the view that the genus requires taxonomic revision. HPLC measurements on those species with myricetin derivatives show that taxa with a qualitatively similar pattern of glycosides can be readily separated on quantitative grounds. Syringetin 3-arabinoside and a glycoside of herbacetin 4′-methyl ether are reported for the first time from the genus.  相似文献   

4.
Two new 5-methyl ether flavone glucosides (7,4′,5′-trihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside and 7,4′-dihydroxy-5-methoxyflavone 7-O-β-D-glucopyranoside) were isolated from the leaves of Thai mangrove Bruguiera gymnorrhiza together with 7,3′,4′,5′-tetrahydroxy-5-methoxyflavone, 7,4′,5′-trihydroxy-5,3′-dimethoxyflavone, luteolin 5-methyl ether 7-O-β-D-glucopyranoside, 7,4′-dihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranoside, rutin, kaempferol 3-O-rutinoside, myricetin 3-O-rutinoside and an aryl-tetralin lignan rhamnoside. The structure of a lignan rhamnoside was found to be related to racemiside, an isolated compound from Cotoneaster racemiflora, and also discussed. Structure determinations were based on analyses of physical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

5.
One new flavonoid glycoside, myricetin 4′-methyl ether 3-O-β-d-xylopyranoside (1) and one new natural triterpene glycoside, grandoside (2) were isolated from a MeOH extract of the leaves of Syzygium grande, together with thirteen known compounds (3–15). The structures of the new compounds were determined through a combination of spectroscopic and chemical analyses. All of the isolated compounds were evaluated for their antifungal, antibacterial, anti-leishmania, DPPH radical-scavenging and cytotoxic activities by means of MTT assay.  相似文献   

6.
One new β-hydroxychalcone, 4-acetoxy-5,2′,4′,6′,β-pentahydroxy-3-methoxychalcone (1), one new flavanone, 7,3′-dihydroxy-5,4′-dimethoxyflavanone (2) and seven known compounds, 2R, 3R-trans-aromadendrin (3), naringenin-7-O-methylether (4), myricetin (5), quercetin-3-O-rutinoside (6), ursolic acid (7), gallic acid (8) and d-glucose (9) were isolated from the methanolic fruit extract of Cornus mas L. (=Cornus mascula L.), Cornaceae. The structures of the new compounds were elucidated on the basis of extensive spectroscopic methods, including 2D NMR experiments and of known compounds by comparison of physical and spectral data with literature.  相似文献   

7.
Eighteen flavonol glycosides were isolated from petal and leaf-stem of Limnanthes douglasii. There were six aglycones: kaempferol, quercetin, isorhamnetin, myriectin, syringetin and a new flavonol, myricetin 3′-methyl ether. Each occurred as the 3-rutinoside, 3-rhamnosylrutinoside and 3-rutinoside-7-glucoside.  相似文献   

8.
9.
A survey of the leaves and flowers of 62 representatives of the tribe Loteae (Leguminosae) showed the presence of several classes of flavonoids: flavonol 7-methyl ethers (rhamnocitrin, rhamnetin), 8-O-substituted flavonols (gossypetin, limocitrin, sexangularetin, corniculatusin), 3′,4′,5′-tri-O-substituted flavonols (myricetin, mearnsetin, syringetin, laricitrin), proanthocyanidins and flavone-C-glycosides. The trisubstitution of the B-ring and the 8-O-substitution of the A-ring allow the definition of a major group including the genera Dorycnium, Bonjeania, Lotus and Tetragonolobus. The presence of proanthocyanidins and 7-O-methylation determine a second group consisting of the genus Anthyllis. Finally, Securigera, on the basis of its flavonoid chemistry, appears to be rather remote from other members of the tribe.  相似文献   

10.

Key message

VcFLS from Vaccinium corymbosum promoted myricetin biosynthesis in Arabidopsis thaliana and VcFLS expression was induced by salicylic acid.

Abstract

Flavonoids are polyphenols with important functions in pigmentation, UV filtration, and symbiotic nitrogen fixation. Flavonols are a class of flavonoids that are produced by the desaturation of dihydroflavanols in a reaction that is catalyzed by flavonol synthase (FLS). In the study reported here, we cloned the full-length cDNA of FLS (designated as VcFLS) from Vaccinium corymbosum (blueberry) using rapid amplification of cDNA ends (RACE). The cDNA contained a 1005-bp open reading frame that encoded a 334-amino acid protein. Phylogenetic analysis showed that VcFLS was closely related to FaFLS, a flavonol synthase that catalyzed the formation of kaempferol and had little effect on the formation of quercetin. Quantitative RT-PCR analysis demonstrated that VcFLS was expressed in all of the tissues tested, with particularly high expression in the petals and young leaves (both green and red). The flavanols myricetin and quercetin also occurred in all of these tested tissues, with the highest levels detected in mature leaves. The expression of VcFLS was not consistent with the accumulation of quercetin and myricetin in different tissues, nor were the expressions of VcFLS, VcPAL, VcCHS, VcF3H, and VcF3′5′H consistent with the accumulation of the quercetin during fruit development. However, the change in the trend of VcCHS and VcF3H expression was similar with myricetin accumulation during fruit development. Expression profiling analysis revealed that VcFLS expression was induced by salicylic acid, a phytohormone involved in plant defense against pathogens, and was suppressed by gibberellic acid, a phytohormone involved in various aspects of plant development. Heterologous expression of VcFLS in Arabidopsis thaliana increased the content of myricetin, but did not affect quercetin content. Thus, we conclude that VcFLS is a key enzyme in the flavonol biosynthetic pathway and would appear to be involved in the plant defense response.
  相似文献   

11.
Histamine plays a key role in inflammatory responses via increasing chemokine and adhesion molecule productions and augmenting vascular permeability in endothelial cells. Rhodomyrtus tomentosa has been found as a rich source of structurally diverse and biologically active metabolites. In this study, the role of phenolic compound from Rhodomyrtus tomentosa (Aiton) Hassk fruits in down-regulation of histamine-induced EA.hy926 endothelial cell activation was investigated. Herein, myricetin was successfully isolated from R. tomentosa fruits by HPLC and its characterization was identified by mass spectrometer and nuclear magnetic resonance spectroscopy. It was revealed that myricetin was effective in suppression of IL-8 and MCP-1 productions and adhesion molecule generation. Moreover, NF-κB activation was inhibited by myricetin via reducing IκB-α phosphorylation and p50/p65 subunit level. Notably, myricetin potentially attenuated vascular permeability of endothelial cells through decrease in eNOS phosphorylation and intracellular calcium elevation. These results indicate that myricetin from R. tomentosa possesses a promissing pharmaceutical property for the amelioration of endothelial inflammatory responses.  相似文献   

12.
In a leaf survey of sixty species from eight genera of the Dilleniaceae, the following flavonoids were characterized: myricetin 3,7,3′,4′-tetramethyl ether, mearnsetin 3-rhamnoside, ombuin 3,3′-disulphate, isorhamnetin 3,7,4′-trisulphate, kaempferol 3,7,4′-trisulphate and apigenin 7-galactosidesulphate.  相似文献   

13.
In this work, we present a computational study on the antioxidant potential of myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.  相似文献   

14.
Hepcidin, a master regulator of iron homeostasis, is a promising target in treatment of iron disorders such as hemochromatosis, anemia of inflammation and iron-deficiency anemia. We previously reported that black soybean seed coat extract could inhibit hepcidin expression. Based on this finding, we performed a screen in cultured cells in order to identify the compounds in black soybeans that inhibit hepcidin expression. We found that the dietary flavonoid myricetin significantly inhibited the expression of hepcidin both in vitro and in vivo. Treating cultured cells with myricetin decreased both HAMP mRNA levels and promoter activity by reducing SMAD1/5/8 phosphorylation. This effect was observed even in the presence of bone morphogenic protein-6 (BMP6) and interleukin-6 (IL-6), two factors that stimulate hepcidin expression. Furthermore, mice that were treated with myricetin (either orally or systemically) had reduced hepatic hepcidin expression, decreased splenic iron levels and increased serum iron levels. Notably, myricetin-treated mice increased red blood cell counts and hemoglobin levels. In addition, pretreating mice with myricetin prevented LPS-induced hypoferremia. We conclude that myricetin potently inhibits hepcidin expression both in vitro and in vivo, and this effect is mediated by altering BMP/SMAD signaling. These experiments highlight the feasibility of identifying and characterizing bioactive phytochemicals to suppress hepcidin expression. These results also suggest that myricetin may represent a novel therapy for treating iron deficiency-related diseases.  相似文献   

15.
BackgroundNeointimal formation, mediated by the proliferation and migration of vascular smooth muscle cells (VSMCs), is a common pathological basis for atherosclerosis and restenosis. Myricetin, a natural flavonoid, reportedly exerts anti-atherosclerotic effects. However, the effect and mechanism of myricetin on VSMCs proliferation and migration and neointimal hyperplasia (NIH) remain unknown.PurposeWe investigated myricetin's effect on NIH, as well as the potential involvement of transforming growth factor-beta receptor 1 (TGFBR1) signaling in mediating myricetin's anti-atherosclerotic and anti-restenotic actions.MethodsMyricetin's effects on the proliferation and migration of HASMCs and A7R5 cells were determined by CCK-8, EdU assays, wound healing, Transwell assays, and western blotting (WB).Molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance (SPR) and TGFBR1 kinase activity assays were employed to investigate the interaction between myricetin and TGFBR1. An adenovirus vector encoding TGFBR1 was used to verify the effects of myricetin. In vivo, the left common carotid artery (LCCA) ligation mouse model was adopted to determine the impacts of myricetin on neointimal formation and TGFBR1 activation.ResultsMyricetin dose-dependently inhibited the migration and proliferation in VSMCs, suppressed the expression of CDK4, cyclin D3, MMP2, and MMP9. Molecular docking revealed that myricetin binds to key regions for TGFBR1 antagonist binding, and the binding energy was -9.61 kcal/mol. MD simulation indicated stable binding between TGFBR1 and myricetin. Additionally, SPR revealed an equilibrium dissociation constant of 4.35 × 10−5 M between myricetin and TGFBR1. According to the TGFBR1 kinase activity assay, myricetin directly inhibited TGFBR1 kinase activity (IC50 = 8.551 μM). Furthermore, myricetin suppressed the phosphorylation level of TGFBR1, Smad2, and Smad3 in a dose-dependent pattern, which was partially inhibited by TGFBR1 overexpression. Consistently, TGFBR1 overexpression partially rescued the suppressive roles of myricetin on VSMCs migration and proliferation. Moreover, myricetin dramatically inhibited NIH and reduced TGFBR1, Smad2, and Smad3 phosphorylation in the LCCA.ConclusionThis is the first study to demonstrate that myricetin suppresses NIH and VSMC proliferation and migration via inhibiting TGFBR1 signaling. Myricetin can be developed as a potential therapeutic candidate for treating atherosclerosis and vascular restenosis.  相似文献   

16.
The terpenoid and flavonoid constituents of the hitherto unexamined medicinal plant Bridelia ferruginea are reported. Quercetin, quercetin 3-glucoside, rutin, myricetin 3-glucoside and myricetin 3-rhamnoside were identified.  相似文献   

17.
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis.  相似文献   

18.
Trans-khellactone, cis-khellactone, 3′-senecioyl-cis-khellactone, 3′-senecioyl-4′-acetyl-cis-khellactone, 4′-senecioyl-cis-khellactone, 3′-acetyl-4′-senecioyl-cis-khellactone, 3′,4′-di-isovaleryl-cis-khellactone, 3′,4′-disenecioyl-cis-khellactone, 3′-angeloyl-4′-isovaleryl-cis-khellactone and 3′-isovaleryl-4′-angeloyl-cis-khellactone were obtained from the aerial part of Seseli tortuosum.  相似文献   

19.
Type 2 diabetes (T2D) affects over 320 million people worldwide. Healthy lifestyles, improved drugs and effective nutraceuticals are different components of a response against the growing T2D epidemic. The specialized metabolite montbretin A (MbA) is being developed for treatment of T2D and obesity due to its unique pharmacological activity as a highly effective and selective inhibitor of the human pancreatic α‐amylase. MbA is an acylated flavonol glycoside found in small amounts in montbretia (Crocosmia × crocosmiiflora) corms. MbA cannot be obtained in sufficient quantities for drug development from its natural source or by chemical synthesis. To overcome these limitations through metabolic engineering, we are investigating the genes and enzymes of MbA biosynthesis. We previously reported the first three steps of MbA biosynthesis from myricetin to myricetin 3‐O‐(6′‐O‐caffeoyl)‐glucosyl rhamnoside (mini‐MbA). Here, we describe the sequence of reactions from mini‐MbA to MbA, and the discovery and characterization of the gene and enzyme responsible for the glucosylation of mini‐MbA. The UDP‐dependent glucosyltransferase CcUGT3 (UGT703E1) catalyzes the 1,2‐glucosylation of mini‐MbA to produce myricetin 3‐O‐(glucosyl‐6′‐O‐caffeoyl)‐glucosyl rhamnoside. Co‐expression of CcUGT3 with genes for myricetin and mini‐MbA biosynthesis in Nicotiana benthamiana validated its biological function and expanded the set of genes available for metabolic engineering of MbA.  相似文献   

20.
The human glyoxalase I (hGLO I), which is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), has been expected as an attractive target for the development of new anti-cancer drugs. We have previously identified a natural compound myricetin as a substrate transition-state (Zn2+-bound MG-glutathione (GSH) hemithioacetal) mimetic inhibitor of hGLO I. Here, we constructed a hGLO I/inhibitor 4-point pharmacophore based on the binding mode of myricetin to hGLO I. Using this pharmacophore, in silico screening of chemical library was performed by docking study. Consequently, a new type of compound, which has a unique benzothiazole ring with a carboxyl group, named TLSC702, was found to inhibit hGLO I more effectively than S-p-bromobenzylglutathione (BBG), a well-known GSH analog inhibitor. The computational simulation of the binding mode indicates the contribution of Zn2+-chelating carboxyl group of TLSC702 to the hGLO I inhibitory activity. This implies an important scaffold-hopping of myricetin to TLSC702. Thus, TLSC702 may be a valuable seed compound for the generation of a new lead of anti-cancer pharmaceuticals targeting hGLO I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号