首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of multiple forms of avocado (Persea americana Mill. cv Hass) cellulase in crude protein extracts of ripe avocado fruit is reported. Cellulase was separated into at least 11 multiple forms by native isoelectric focusing in the pH range between 4 and 7 and visualized by both activity staining using Congo red and immunostaining. The enzyme components were acidic proteins with isoelectric points in the range of pH 5.10 to 6.80, the predominant forms having isoelectric points of 5.60, 5.80, 5.95, and 6.20. All 11 forms were immunologically related with molecular masses of 54 kilodaltons.  相似文献   

2.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

3.
Mushroom o-diphenol oxidase was separated into multiple forms by isoelectric focusing. Three major bands, as opposed to the four isoenzymes previously found, were separated over the pH range 3.5–9.5. A fourth form was obtained when the pH range was narrowed to 5.0–8.0. Changes in the enzyme activity were investigated during post-harvest ageing at different temperatures. Rapid ageing using tissue discs with or without inhibitors of protein synthesis showed that an increase in activity of the enzyme took place during this time, but was prevented by actinomycin D and 6 methyl purine.  相似文献   

4.
Purified suspensions of highly viable parenchymal, endothelial, and Kupffer cells were prepared from rat liver. In the liver cell classes, total activities of acid phosphatase were determined with 4-methylumbelliferylphosphate, 1-naphthylphosphate, and p-nitrophenylphosphate. The specific enzyme activities were different for each type of cell and, even within one cell class, the enzymes showed different conversion rates for the three substrates. These results indicate the presence of multiple forms of acid phosphatase enzymes in each cell class. The inhibiting effects of tartrate, fluoride, and alloxan on the acid phosphatase activities were investigated. Depending on the substrate used, the inhibitors inactivated the enzymes at different rates, which also indicates the presence of multiple forms of acid phosphatase enzymes in the liver cell classes. By means of an isoelectric focusing technique, acid phosphatase enzymes could be separated on the basis of their differences in isoelectric points. One form with an isoelectric point around 4 is found in Kupffer cells, whereas another form with an isoelectric point of about 7 is found in parenchymal cells. Endothelial cells possess both forms. These findings suggest a specificity in the function of this lysosomal enzyme in each cell class.  相似文献   

5.
Avian liver p-hydroxyphenylpyruvate hydroxylase (EC 1.13.11.27) was purified to a 1000-fold increase in specific activity over crude supernatant, utilizing a substrate analogue, o-hydroxyphenylpyruvate, to stabilize the enzyme. The preparation was homogeneous with respect to sedimentation with a sedimentation velocity (s20,w) of 5.3 S. The molecular weight of the enzyme was determined to be 97,000 +/- 5,000 by sedimentation equilibrium, and the molecular weight of the subunits was determined to be 49,000 +/- 3,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis revealed heterogeneity of the purified enzyme. The multiple molecular forms were separable by isoelectric focusing, and their isoelectric points ranged from pH 6.8 to 6.0. The amino acid compositions and tryptic peptide maps of the three forms isolated by isoelectric focusing were very similar. The forms of the enzyme had the same relative activity toward p-hydroxyphenylpyruvate and phenylpyruvate. Conditions which are known to accelerate nonenzymic deamidation of proteins caused interconversion of the multiple molecular forms. Iron was the only transition metal found to be associated with the purified enzyme at significant levels. The amount of enzyme-bound iron present in equilibrium-dialyzed samples was equivalent to 1 atom of iron per enzyme subunit. Purification of the enzyme activity correlated with the purification of the enzyme-bound iron. An EPR scan of the purified enzyme gave a signal at g equal 4.33, which is characteristic of ferric iron in a rhombic ligand field.  相似文献   

6.
Tyrosinase (EC 1.14.18.1) was purified from regenerating chicken feathers. Most of the enzyme activity was in the insoluble fraction, which was solubilized with 0.5% sodium cholate. Solubilized tyrosinase showed multiple forms on isoelectric focusing. The isoelectric points had the following pI values: 5.06, 4.83, 4.68, 4.56, 4.44, 4.32, 4.24, 4.14, 4.06 and 3.97. This tyrosinase fraction was subjected to trypsin (EC 3.4.21.4) cleavage, Sephacryl S-200, hydroxylapatite and DEAE-cellulose chromatography. Purified enzymatically active tyrosinase also showed multiple forms. Their isoelectric points were: 4.23, 4.14, 4.06, 3.99 and 3.91. Each active form had almost the same molecular weight, estimated at 66 000. Staining for 1,2-diol groups of glycoproteins and neuraminidase (EC 3.2.1.18) treatment suggested that chicken tyrosinase is a glycoprotein. The enzyme showed both dopa(L-3,4-dihydroxylphenylalanine) oxidase activity and tyrosine hydroxylase activity.  相似文献   

7.
Guanine aminohydrolase (GAH) (E.C. 3.5.4.3) was purified by affinity chromatography on 9-(p-β-aminoethoxyphenyl)guanine-Sepharose to a specific activity of 35.5 units/mg. The molecular weight of the enzyme was estimated to be 110,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) showed that the enzyme was composed of subunits with molecular weights of approximately 52,000. Data from SDS-gel electrophoresis in a discontinuous buffer system and from isoelectric focusing in the presence of 8-m urea indicated that more than one type of subunit were present. This was consistent with multiple forms of the native enzyme seen by electrophoresis and isoelectric focusing in polyacrylamide gels. The isoelectric points for the different forms of GAH were in the range of 4.65–4.85. Amino acid analyses showed cysteine to be the minimum amino acid and gave a calculated molecular weight for GAH of 53,016 when the assumption that there were four cysteines per subunit was made. Guanine, 8-azaguanine, and 6-thioguanine served as substrates for the enzyme but 3-deazaguanine, a potent competitive inhibitor of GAH, did not. Fluoride ion inhibited the enzyme in a noncompetitive manner, and this inhibition decreased as pH increased. Variation of the kinetic parameters with pH suggested that hydroxide ion might be the second substrate and that a functional group on the enzyme with a pKa near 5.6 was involved in the reaction. The enzyme was inactivated by treatment with p-hydroxymercurobenzoate and by photooxidation in the presence of rose bengal. Two plausible mechanisms are proposed for the reaction catalyzed by GAH.  相似文献   

8.
Multiple forms of β-glucuronidase have been demonstrated using sucrose gradient and polyacrylamide gel isoelectric focusing techniques in 6 m urea. Microsomal β-glucuronidase, a membrane-bound enzyme, was solubilized from lysosome-free, Ca2+-precipitated microsomes by detergents and isolated by chromatography on columns of rabbit anti-rat preputial gland β-glucuronidase antibody bound to Sepharose. The enzyme has a pI of 6.7. Polyacrylamide gel isoelectric focusing resolves the microsomal enzyme into three components, each of which is protease sensitive. The protease-modified microsomal enzyme is very similar to several forms of β-glucuronidase in lysosomes. The lysosomal β-glucuronidase, isolated from osmotically shocked lysosomes, is very heterogeneous after isoelectric focusing over the range pI 5.4–6.0. The lysosomal enzyme can be resolved into 10–12 bands by polyacrylamide gel isoelectric focusing. The more acid forms of the lysosomal enzyme are neuraminidase sensitive, suggesting they may be sialoglycoproteins.  相似文献   

9.
Extracellular proteins from Botrytis cinerea CBS 144.55 were separated by use of isoelectric focusing in polyacrylamide gel and thin layer isoelectric focusing. In addition to the protein pattern, the activities of protease, amylase, cellulase, polygalacturonase, pectinesterase and glycosidases were determined.  相似文献   

10.
gamma-Butyrobetaine hydroxylase [4-trimethylaminobutyrate, 2-oxoglutarate:oxygen oxidoreductase (3-hydroxylating), EC 1.14.11.1] from human kidney was resolved into three forms by chromatofocusing. After further chromatography on an anion-exchanger, each form appeared as a single band on electrophoresis in polyacrylamide gel containing sodium dodecyl sulphate. The isoelectric points of isoenzymes 1, 2 and 3 were 5.6, 5.7 and 5.8 respectively, as estimated by isoelectric focusing. Their specific activities were 17-29 mu kat/g of protein. The concentrations of the three isoenzymes were about equal, possibly slightly lower for isoenzyme 1. The requirement for Fe2+ and the Km values for gamma-butyrobetaine and 2-oxoglutarate were about the same for the different enzyme forms. L- and D-Carnitine caused decarboxylation of 2-oxoglutarate to the same extent (8 and 29%) with the three forms. The enzyme forms had the same mass, 64 kDa, as determined by gel filtration in nondenaturing media. The same subunit mass, 42 kDa, was obtained for the multiple forms by electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Isoenzyme 2 was resolved into two protein bands by isoelectric focusing in polyacrylamide gels containing urea. Isoenzyme 1 contained only one of these bands and isoenzyme 3 the other. The three enzyme forms of gamma-butyrobetaine hydroxylase thus appear to be dimeric combinations of two subunits differing in charge but not in size. gamma-Butyrobetaine hydroxylase from crude extracts of human, rat and calf liver was also separated into multiple forms by a chromatofocusing technique. The isoenzyme pattern was the same in human liver and kidney. The technique used to resolve the mammalian enzymes gave no evidence for the presence of multiple forms of the bacterial enzyme from Pseudomonas sp. AK 1.  相似文献   

11.
Abstract Exopolygalacturonase, endopolygalacturonase and pectinesterase were separated from culture filtrates of Trichoderma reesei QM9414 by Sephadex chromatography. Exopolygalacturonase was characterized by specific cleavage of pectic acid to form d -galactopyranuronic acid, and by the hydrolysis of oligomers (highest reaction rate at pentamer). Polygalacturonase exhibited 2 pH-optima peaks (at 4.8 and 5.1) and 10 bands with enzyme activity by isoelectric focusing (IEF) (p I 4.6–8.5). Pectinesterase showed a pH-optimum at 7.6, and 6 enzyme-activity bands on an IEF zymogram which seemed identical with those of higher plants (tomato, alfalfa).  相似文献   

12.
The extracellular cyclic-AMP phosphodiesterase of a mutant of Dictyostelium discoideum which accumulates this enzyme was found to exist in multiple forms. Using the isoelectric focusing technique the phosphodiesterase activity was distributed into three peaks with isoelectric points of 4.6, 6.5 and 8.3, designated as p4, p6 and p8. Gel filtration and sucrose gradient analysis showed that the p4 activity consisted of two forms of different sedimentation coefficients. At high enzyme concentrations, the heavy form was favored. Dilution of enzyme activity shifted the equilibrium toward the light form. Direct analysis by sucrose gradient sedimentation of all isoelectric forms demonstrated that besides p4, p6 activity also existed as a mixture of the heavy (9.7 S) and the light (5.4 S) components. In contrast, the p8 activity displayed only the light form. The heterogeneity of the p4 and p6 isoelectric forms was also observed by polyacrylamide gel electrophoresis. A procedure for a partial purification of the extracellular enzyme to about 70-fold is presented.  相似文献   

13.
1. Different forms of the rat small-intestinal ;acid' beta-galactosidase were separated by using the isoelectric-focusing technique. The isoelectric points of the different forms were at pH4.2, 4.6, 5.4, 6.1 and approx. 8. 2. The two forms of ;acid' beta-galactosidase isoelectric at pH4.2 and 4.6 were completely excluded from the Sephadex G-200 gel, whereas the form isoelectric at pH8 had K(av.) 0.4. The concentration and pH of the elution buffer influenced the distribution of enzyme activity between different forms. Thus, under certain conditions of ionic strength and pH, the enzyme seems to form high-molecular-weight aggregates with low isoelectric points. These may be homopolymeric aggregates or the result of binding of enzyme to, for example, membrane fragments. The forms isoelectric at pH5.4 and 6.1 are probably aggregates of intermediate size. 3. During ion-exchange chromatography at pH6.0 one fraction of ;acid' beta-galactosidase was not retained on the column and was isoelectric at pH8 and another fraction was eluted when the buffer concentration in the eluate had increased to about 50mm. The main part of enzyme eluted in this second fraction was also isoelectric at pH8, indicating that the elution of this fraction is not a simple ion-exchange procedure but probably also involves a splitting of high-molecular-weight aggregates, originally retained because of their low isoelectric points. The enzyme subunits have a higher isoelectric point, and are therefore no longer bound to the ion-exchange resin.  相似文献   

14.
Ornithine decarboxylase (ODC) isolated from a variety of tissues has been separated, using DEAE ion-exchange chromatography, into multiple peaks of activity that appear to be related to control of this enzyme stability. Reports of these charge isoforms in current literature are generally unclear as to whether these represent a covalent posttranslational modification or merely an alteration in structural conformation or association. In this study we investigated the relationship of this form separation to the degree of enzyme polymerization, interaction with other proteins and buffer components, and the multiple isoelectric forms of this enzyme noted in denaturing concentrations of urea. High-performance chromatography techniques were used to demonstrate that two of the major enzyme forms, ODC I and II, are really monomers of the enzyme, while minor peaks of activity frequently observed to elute after ODC II contain various dimeric enzyme states. Pyridoxal 5'-phosphate (0.05 mM) added to isolated enzyme preparations composed of I and II monomers induced the formation of I and II dimers as well as a mixed I-II dimer. All three dimer forms were observed to be natural components of freshly isolated crude cell homogenates. The charge distinction between the monomer forms I and II was found to be maintained during ion-exchange chromatography in the presence of 8 M urea, and the enzyme isoforms demonstrated distinct bands on isoelectric focusing gels run in the presence of 9 M urea. Thus, although some of the multiple ornithine decarboxylase forms identified by ion-exchange chromatography of crude mammalian cell homogenates are related to enzyme conformation, the two major forms are distinctly charged protein states that can be visualized using two-dimensional gel electrophoresis of highly purified samples.  相似文献   

15.
The heterogeneity of dipeptidyl peptidase IV (EC 3.4.14.5) was investigated in normal human serum. Thin-layer analytical isoelectric focusing revealed the presence of multiple molecular forms of the enzyme, their isoelectric points being in the pH range of 3.30-4.25. The maximum of enzyme activity appeared around pH 3.50. After treatment with neuraminidase the pI shifted to 4.70-5.40 with two maxima at pH 5.00 and 5.15. The Triton X-100 solubilized as well as the papain-treated-Triton X-100 solubilized enzyme from the whole human adult jejunal biopsy were also found to be heterogeneous. They focused--both before and after neuraminidase treatment--at pH values different from those of the enzyme of normal human serum. There was almost no pI shift after neuraminidase treatment of the intestinal enzyme from adult enterobiopsy. Electrophoresis in continuous polyacrylamide gradient gels as well as gel chromatography on Bio-Gel A-1.5m revealed two molecular forms of dipeptidyl peptidase IV in normal human serum. The estimated relative molecular mass of the major enzyme form was 250 000 in both the separation techniques used. On the other hand, the apparent relative molecular mass of the minor enzyme form was 450 000 as assessed by gradient gel electrophoresis, and 550 000, when estimated by gel chromatography. The Km values for glycyl-L-proline-4-nitroanilide as substrate with the major and minor forms of the serum enzyme were 1.60 +/- 0.39 X 10(-4) mol/l and 1.60 +/- 0.13 X 10(-4) mol/l, respectively. Our results indicate that the dipeptidyl peptidase IV in normal human serum is a heterogeneous enzyme as far as its charge and molecular size are concerned.  相似文献   

16.
Isoelectric focusing of the acid beta-D-galactosidases (beta-D-galactoside galactohydrolase, EC 3.2.1.23) in normal crude liver supernatant fluids demonstrated multiple isoelectric forms in the pH range 4.58-5.15, while corresponding I-cell disease samples showed an absence of isoelectric forms in the pH range 4.99-5.15. Concanavalin A-Sepharose 4B chromatography of the I-cell disease mutant C.A. demonstrated a 31% and 37% decrease in the binding of 4-methyl-umbelliferyl-beta-D-galactosidase and GM1 beta-D-galactosidase activities, respectively, when compared to normal samples. Isoelectric focusing profiles of the concanavalin A-Sepharose 4B alpha-methyl-D-mannoside effluents containing normal and I-cell disease acid beta-D-galactosidase were generally similar, but the unadsorbed I-cell disease enzyme from concanavalin A-Sepharose 4B demonstrated more activity in the pH range 4.21-4.49 than normals. Normal and I-cell disease acid beta-D-galactosidase "A" and "B", separated by gel column chromatography were found to have similar properties with respect to apparent molecular weights pH vs. activity profiles and apparent Km values for the 4 methylumbelliferyl-beta-D-galactopyranoside, GM1-ganglioside and asialofetuin (ASF) substrates. However, the apparent V values for the ICD samples were consistently reduced when compared to the results obtained with the corresponding normal fractions. The greatest decreases in apparent V were obtained for acid beta-D-galactosidase activities in I-cell disease crude supernatant fluids, and for the separated I-cell disease "B" enzyme. The differences in the isoelectric focusing profiles, the altered binding to concanavalin A-Sepharose 4B, and the reduced V values with natural and synthetic substrates may be related to changes in carbohydrate composition of I-cell disease acid beta-D-galactosidase.  相似文献   

17.
Isoelectric focusing of yeast isocitrate dehydrogenase apparently reveals a number of ;isoenzymes'. These have isoelectric points near pH5.5 in crude material, but during purification the mean isoelectric point progressively rises to pH7.0 and the band pattern changes. The shift in isoelectric point during purification is apparently genuine, since it is also manifested in the electrophoretic and chromatographic properties of the enzyme. The multiple forms, however, are an artifact, generated by exposure of the enzyme to Ampholine, since their activities vary with the protein/Ampholine ratio and they cannot be observed in any system from which Ampholine is excluded. There are no detectable isoenzymes of yeast isocitrate dehydrogenase.  相似文献   

18.
Theo Fahrendorf  Erwin Beck 《Planta》1990,180(2):237-244
Two different forms of acid invertase (EC 3.2.1.26) were extracted from expanding leaves of the stinging nettle (Urtica dioica L.). One form was soluble and could be localized within the cytosol, whereas the other was ionically bound to the cell-wall and could not be detected in protoplasts. Both forms were purified, the latter to homogeneity. Western blotting with antibodies against the pure enzyme from cell walls was positive with the cell-wall enzyme but negative with the soluble form of acid invertase. Both forms are glycoproteins with identical molecular weights of 58 kDa. The Km values for sucrose (raffinose) are 5 mM (4.8 mM) for the soluble and 1.2 mM (3.6 mM) for the cell-wall-bound enzyme. The pH optimum of the latter is slightly more acidic (4.5) than that of the soluble invertase (5.5). Both forms could easily be distinguished by their isoelectric points which were determined at pH 4.6 for the soluble and pH 9.3 for the wall-bound enzyme. When extraction and purification were carried out in the absence of protease inhibitors, both acid invertases showed microheterogeneity (multiple forms). However, with benzamidine and phenylmethylsulfonylfluoride as protease inhibitors each invertase produced only one protein band upon isoelectric focusing and gel electrophoresis, respectively.Abbreviations B benzamidine - Con A concanavalin A - FPLC fast protein liquid chromatography - IEF isoelectric focusing - kDa kilodalton - pI isoelectric point - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecyl sulfate This work was supported by the Deutsche Forschungsgemeinschaft within the scope of the Sonderforschungsbereich 137.  相似文献   

19.
Production of pectinesterase and polygalacturonase by Aspergillus niger was studied in submerged and solid-state fermentation systems. With pectin as a sole carbon source, pectinesterase and polygalacturonase production were four and six times higher respectively in a solid state system than in a submerged fermentation system and required a shorter time for enzyme production. The addition of glucose increased pectinesterase and polygalacturonase production in the solid state system but in submerged fermentation the production was markedly inhibited. A comparison of enzyme productivities showed that those determined for pectinesterase and polygalacturonase with pectin as a carbon source were three and five times higher by using the solid state rather than the submerged fermentation system. The productivities of the two enzymes were affected by glucose in both fermentation systems. The membranes of cells from the solid state fermentation showed increased levels of C18:1, C16:0 and C18:0 fatty acids. Differences in the regulation of enzyme synthesis by Aspergillus niger depended on the fermentation system, favoring the solid state over the submerged fermentation for pectinase production. Received 12 May 1997/ Accepted in revised form 19 September 1997  相似文献   

20.
Using anion-exchange chromatography on different carriers and phenyl-Sepharose hydrophobic chromatography, five pectolytic enzymes were isolated from the culture liquid of a mutant strain of Aspergillus japonicus: two endo-polygalacturonases (I and II, 38 and 65 kD, pI5.6 and 3.3), pectin lyase (50 kD, pI3.8), and two pectinesterases (I and II) with similar molecular weights (46 and 47 kD) and the same pI(3.8). The pectinesterases apparently represent two isoforms of the same enzyme. All purified enzymes were homogenous according to SDS-PAGE and polyacrylamide gel-IEF, except for endo-polygalacturonase II that gave two bands on isoelectric focusing, but one band on electrophoresis. All enzymes had maximal activity in an acid medium (at pH 4.0-5.5). The pectin lyase and pectinesterase were stable at 40-50°C. The thermal stability of both endo-polygalacturonases was much lower (after 3 h of incubation at 30°C, endo-polygalacturonases I and II lost 40 and 10% of the activity, respectively). The activity of endo-polygalacturonases I and II towards polygalacturonic acid strongly depended on NaCl concentration (optimal concentration of the salt was 0.1-0.2 M); the enzymes were also capable of reducing the viscosity of pectin solution, but rather slowly. The pectin lyase had no activity towards polygalacturonic acid. The activity of the pectin lyase increased with increasing degree of methylation of pectins. Both endo-polygalacturonases demonstrated synergism with the pectinesterase during the hydrolysis of highly methylated pectin. On the contrary, in the mixture of pectin lyase and pectinesterase an antagonism between the two enzymes was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号