首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular species of sulpholipid (diacylsulphoquinovosylglycerol) were separated and analysed after incubation of developing barley (Hordeum vulgare) leaves with either (1-14C]-acetate or [35S]-sulphate. The major endogenous molecular species were the trienoic (42%) and the hexaenoic (39%). However, the combined anenoic, monoenoic and dienoic species, which only accounted for 5% of the mass, represented 80% of the labelled species with either precursor. In one experiment, 90% of this radioactivity was found in the dienoic species. The effect of light on the labelling of the molecular species was examined. Acetate is incorporated primarily into the fatty acids of sulpholipid. Transacylation appears to be important in the interconversion of the molecular species of sulpholipid.  相似文献   

2.
Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.  相似文献   

3.
《Phytochemistry》1987,26(11):2923-2927
The action of boron on phospholipid composition and synthesis in roots and microsomes from sunflower seedlings has been studied. The fatty acid composition and relative amounts of individual molecular species of phospholipids in roots and microsomes were very similar. In both the content of phospholipids was decreased and the relative levels of their component fatty acids changed by treatment with 50 ppm of boron. This concentration of boron in the culture medium was found to inhibit the in vivo [1-14C] acetate incorporation into root lipids and that of [Me-14C] choline into phosphatidylcholine of root microsomes. Cytidine-5-diphospho (CDP)-[Me-14C] choline incorporation into phosphatidylcholine of isolated microsomes was also inhibited by 50 ppm of boron when present in the growth medium of seedlings. These results indicate that the decrease in phosphatidylcholine labelling from [14C] choline observed when root microsomes were treated with boron would be caused by a decrease in CDP-choline phosphotransferase activity.  相似文献   

4.
The relative suitability of different molecular species of 1,2-diacyl-sn-glycerols as substrates for the diacylglycerol kinase (ATP: 1,2-diacyl-sn-glycerol phosphotransferase) in rat brain microsomes was investigated. The diacylglycerols tested were a mixture of the 1-[3H]palmitoyl and 1-[14C]stearoyl homologues of either the 2-oleoyl (monoenoic), 2-linoleoyl (dienoic), 2-arachidonoyl (tetraenoic), or 2-docosahexaenoyl (hexaenoic) diacylglycerols with an isotope ratio (3H/14C) approximately equal to 1.00. At substrate concentrations of 0.125 mM and 0.60 mM, only a modest preference of the kinase for total (1-palmitoyl plus 1-stearoyl homologues) monoenoic over total hexaenoic species was indicated. The tetraenoic diacylglycerols gave reaction rates which were not significantly different from the monoenes, dienes, or hexaenes when the data were analyzed statistically. No significant enzyme selectivity for either the 1-palmitoyl or 1-stearoyl homologues of the various 1-saturated 2-unsaturated diacylglycerols was apparent. The present results, together with data on the composition of free 1,2-diacylglycerols in brain, which reveal a preponderance of tetraenoic molecular species, suggest that the tetraenoic phosphatidic acids (mainly as 1-stearoyl 2-arachidonoyl species) are quite possibly the major products of diacylglycerol kinase activity in rat brain under physiological conditions.  相似文献   

5.
The conversion of 1-[14C]acyl-sn-glycero-3-phosphoserine into molecular species of [14C]phosphatidylserine was studied using rat liver homogenate and microsomal preparations in the absence of added fatty acyl moieties. In liver homogenates, 81% of the newly-formed phosphatidylserines were tetraenoic (arachidonoyl) species while saturated, monoenoic, dienoic, trienoic, pentaenoic, and hexaenoic (docosahexaenoyl) species each represented 2-5% of the total. A similar pattern of molecular species was produced in liver microsomes. The selectivity of the microsomal acyl-CoA:1-acyl-sn-glycero-3-phosphoserine acyltransferase towards different acyl-CoA derivatives was also investigated. The relative suitability of the various acyl-CoA esters as substrates was found to be of the following order:20:4 = 18:2 greater than 18:1 greater than 16:0 = 18:0. These results with endogenous acyl donors suggest that the acylation of 1-acyl-sn-glycero-3-phosphoserine may partly account for the enrichment of liver phosphatidylserine in arachidonic acid but does not appear to be primarily responsible for the preponderance of docosahexaenoic acid in this phospholipid. The fatty acid specificity of the acyl-CoA: 1-acyl-sn-glycero-3-phosphoserine acyltransferase may contribute to the preferential formation of arachidonoyl phosphatidylserine.  相似文献   

6.
Incorporation of L-[3-14C]serine into phosphatidylserine (PS) and phosphatidylethanolamine (PE) has been studied in isolated rat hepatocytes. Ethanolamine inhibited the incorporation, indicating competition with serine in the base-exchange reaction. Choline, monomethylethanolamine, dimethylethanolamine and dimethyl-3-aminopropan-1-ol had no such effect. The observed rate of PS biosynthesis corresponded to 7-17 nmol/min per liver at 0.55 mM L-serine. The results indicate that only a small fraction (1/25 to 1/70) of the PS pool equilibrates with the base-exchange enzyme, and that decarboxylation to PE occurs preferentially from this pool. The rate of PS synthesis and decarboxylation can therefore not be calculated by methods which assume random, homogeneous labelling of the total PS pool. The apparent rate of PS decarboxylation increased approx. 4-fold when L-serine increased from 0.5 to 2.25 mM, suggesting that decarboxylation of PS to PE might be regulated by the concentration of L-serine or by the amount of PS present in the hepatocyte cell membranes. Lauric, palmitic, stearic, oleic and linoleic acid decreased the rate of PS synthesis. At 0.5 mM, lauric and palmitic acid were most inhibitory. At 1.0 mM, linoleic acid was the least inhibitory fatty acid. The saturated hexaenoic and saturated tetraenoic species of PS contained 51 and 29%, respectively, of the incorporated L-[3-14C]serine. The combined monoene dienoic/diene dienoic fraction had the highest rate of synthesis judged by its relative specific activity. At 0.9 mM concentration, linoleic acid doubled the relative specific activity of the combined monoene dienoic/diene dienoic fraction of PS. Incorporation of L-[3-14C]serine into molecular species of PE resembled that into PS, both in the absence and presence of linoleic acid, suggesting that the phosphatidylserine decarboxylase (EC 4.1.1.65) has a low specificity towards the fatty acid composition of PS. The results indicate that biosynthesis of PS from L-serine occurs mainly by the base-exchange with only negligible contribution from direct incorporation of phosphatidic acid or diacylglycerol. Furthermore, the deacylation-reacylation pathway seem to contribute only little to the determination of the fatty acid composition of hepatocyte PS. Active PS turnover seems to be confined to a small fraction of the PS pool.  相似文献   

7.
To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.Abbreviations FA fatty acid(s) - HPTLC high-performance thin-layer chromatography - MBP myelin basic protein - PLP proteolipid protein - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PS phosphatidylserine - SDS sodium dodecylsulfate  相似文献   

8.
The structure of liquid hydrocarbons and fatty acids produced by the green alga Botryococcus was identified. Two representatives of this alga, Botryococcus braunii Kütz, strain IPPAS H-252, introduced into culture earlier and an organism isolated for the first time from the Shira Lake, were used for this identification. Fatty acid composition of B. braunii, strain H-252, lipids was characterized by a high content of trienoic acids of C16–C18 series. The hydrocarbon composition of this strain was represented by straight-chain and branched-chain C14–C28 components; long-chain linear aliphatic C20–C27 hydrocarbons (54.4%) and 2,6,10,14-tetramethylhexadecane (20.5%) predominated among them. The strain H-252 differed in its fatty acid and hydrocarbon composition from the strains described earlier as Botryococcus braunii. The fatty acid composition of the Botryococcus isolate was represented mainly by C12–C32 saturated and monoenoic acids. The hydrocarbons formed by this isolate were represented by dienoic and trienoic components. C29 (48.9–56.3%) and C31 (11.1–16.3%) hydrocarbons predominated among the C23–C31 dienoic hydrocarbons, and C27, C29, and C31 trienoic hydrocarbons comprised 2.5–2.6% of total hydrocarbons. This type of hydrocarbons and the lipid fatty acid composition were characteristic for the race A of B. braunii.  相似文献   

9.
1. Nerve cell bodies were isolated in bulk from cerebral cortices of 15 day-old rabbits after intrathecal injections of [3H]plamitate, [3H]oleate or [3H]arachidonate and [14C]glycerol. 2. Nuclear, microsomal and two mitochondrial fractions were isolated from homogenates of the radioactively labelled nerve cell bodies by using differential and discontinuous-gradient centrifugation. 3. After 7.5min in vivo, a high percentage (>80%) of the total 3H-labelled fatty acid radioactivity was found in the membrane fractions of the nerve cell bodies, whereas after 60min in vivo 50% of the total [14C]glycerol radioactivity was found in the high-speed supernatant. 4. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, and the radioactivity in neutral lipid and non-esterified fatty acid fractions were determined in the four subfractions, as were the distributions of several marker enzymes and nucleates. 5. With respect of 3H-labelled fatty acid, the phospholipids of the nuclear fraction had the highest specific radioactivities of the four subfractions. However, for [14C]glycerol labelling, generally the 14C specific radioactivities for individual phospholipids were comparable in the four subfractions. This latter observation suggests transport of phospholipids synthesized de novo between membranes of the nerve cell body. 6. Double-labelling experiments demonstrated that individual phospholipids and the combined neutral lipids of the nuclear fraction had higher labelling ratios of 3H-labelled fatty acid/[14C]glycerol than did the corresponding lipids of the microsomal or mitochondrial fractions. 7. On the basis of the labelling results and the marker studies, it is proposed that it is indeed the nuclei of the nuclear fraction that have these lipids highly labelled with 3H-labelled fatty acid, and the existence of nuclear acyl transferases that are responsible for this fatty acid incorporation is suggested.  相似文献   

10.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

11.
The effect of a substituted pyridazinone (4-chloro-5(dimethylamino)-2-phenyl-3(2H)pyridazinone; Sandoz 9785; BASF 13-338) on the formation of fatty acids from radiolabelled precursors has been studied in a number of angiosperms, bryophytes and algae. The labelling of [14C]linolenic acid was decreased by the herbicide in leaves of barley and rye grass and in cucumber cotyledons regardless of whether [14C]acetate,[14C]oleate or [14C]linoleate was used as precursor. A commensurate increase in the labelling of [14C]linoleic acid was also observed in these species. In contrast, the pattern of fatty acid labelling in maize, pea and spinach leaves was unaffected by 0.1 mM Sandoz 9785. More generalized inhibition of the incorporation of radioactivity from [14C]acetate into the fatty acids of bryophytes and algae was seen. Sandoz 9785 did not alter the distribution of radioactivity in different lipid classes of higher plant leaves, nor did it change the proportions of radioactive fatty ac ids in phosphatidylcholine. In contrast to phosphatidylcholine, which never contained more than trace amounts of [14C]linolenate, diacylgalactosylglycerol contained high levels of the radioactive acid. The relative labelling of linolenate was severely reduced in diacylgalactosylglycerol by Sandoz 9785 in sensitive angiosperms. Uptake studies, in which [3H]Sandoz 9785 was employed demonstrated that the uptake of Sandoz 9785 was reflection of water uptake. Following its uptake, Sandoz 9785 was rapidly converted into other compounds in pea but only gradually metabolized in cucumber and ryegrass. The results are interpreted as showing, firstly, that the different sensitivity of higher plants to Sandoz 9785 is due to variations both in uptake and in metabolism. Secondly, Sandoz 9785 specifically inhibits the desaturation of linoleate to linolenate and, thirdly, diacylgalactosylglycerol plays a role in this conversion.  相似文献   

12.
The effect of ambient temperature on the composition of intracellular fatty acids and the release of free fatty acids (FFA) into a medium by cyanobacterium Spirulina platensis and eukaryotic microalgae, Chlorella vulgaris and Botryococcus braunii, was studied using their batch cultures. It was found that all the species studied, regardless of their taxonomic status, responded to the temperature regime by similar changes in their intracellular fatty acid composition: the relative content of more unsaturated fatty acids decreased with the elevation of temperature. At the same time, in the prokaryote, this temperature shift blocked, first of all, the elongation of 16:0 to 18:0 and then their further desaturation. In eukaryotes, the change in the desaturation of dienoic to trienoic fatty acids was the most pronounced process. The ratio of dienoic to trienoic fatty acids remained almost unchanged in S. platensis. The relative content of extracellular unsaturated FFA increased in the prokaryotic organism S. platensis at a higher temperature. But no significant changes in the composition of extracellular unsaturated FFA were detected in eukaryotic algae upon temperature elevation.  相似文献   

13.
(1) Human platelets were incubated with high density lipoproteins (HDL) doubly labelled with either free [14C]arachidonate/[3H]arachidonoylphosphatidylcholine or free [14C]oleate/[3H]oleoylphosphatidylcholine. Whereas [14C]arachidonate was incorporated at a 10–15 times higher rate than [14C]oleic acid, the exchange of both species of phosphatidylcholine occurred to the same extent. In both cases, free 3H-labelled fatty acids were generated during the labelling procedure, indicating phospholipase A2 hydrolysis. A redistribution of radioactivity to other phospholipids was noted after exchange of [3H]arachidonoylphosphatidylcholine only. (2) The exchange of phosphatidylcholine to platelets was confirmed using [14C]choline-labelled dipalmitoyl- and 1-palmitoyl-2-arachidonoylphosphatidylcholines. (3) Non-lytic degradation of platelet phospholipids by phospholipases revealed that free fatty acids were incorporated at the inside of the cells, whereas exchange was taking place on the platelet outer surface. However, 2-arachidonoylphosphatidylcholine displayed a more rapid movement towards the cell inside. The above findings suggest a topological asymmetry for the two pathways (acylation and exchange) of fatty acid renewal in platelets. The possible mechanisms and physiological relevance of the translocation of the external arachidonic acid pool across the membrane are discussed.  相似文献   

14.
The specificity of the Ca2+-stimulated choline and ethanolamine incorporation into the molecular subspecies of the correspondent choline and ethanolamine phosphoglycerides has been investigated in vitro in rat brain microsomes. In the presence of 5.0 mM Ca2+-ions and at pH 8.1, choline was incorporated 6 times faster into the tetraenoic diacyl-glycero-3-phosphorylcholines (diacyl-GPCs or lecithins) than into the saturated subspecies. The specific activities of the other species were intermediary, and decreased with increasing saturation. Hexaenoic species of lecithins were however weakly labelled. The rate of labelling of diacyl-GPC molecular subspecies was affected noticeably by changing the pH and the Ca2+-ion concentration of the incubation medium. Ethanolamine was incorporated in the presence of 2.5 mM Ca2+-ions and at pH 8.1 preferentially into the monoenoic species of total ethanolamine phosphoglycerides of rat brain microsomes. The rate of incorporation into the monoenoic species was twice that into the trienoic, tetraenoic and hexaenoic and 4 times faster that into the dienoic species. When the pattern of labelling was determined specifically for the molecular subspecies of diacyl-glycero-3-phosphorylethanolamines (diacyl-GPEs or phosphatidylethanolamines), the rate of incorporation of ethanolamine into the hexaenoic species resulted three times faster that into the saturated and monoenoic species and about twice that into the trienoic and tetraenoic species, in accordance with data for liver microsomes. The pattern of labelling of the molecular subspecies of ethanolamine phosphoglycerides and of diacyl-GPEs was not influenced by changing the pH and the Ca2+-ion concentration of the incubation medium.  相似文献   

15.
Abstract– The molecular species composition of phosphatidylinositol from guinea-pig cerebral hemispheres was studied and found similar to that of phosphatidylinositol from ox cerebral hemispheres. In both cases the tetraenoic species was predominant. Phosphatidic acid from guinea-pig cerebral hemispheres contained two major molecular species; the monoenoic and hexaenoic (33.4 and 24 mol/100 mol respectively). In order to study the metabolism of molecular species of phosphatidic acid and phosphatidylinositol in the cerebral hemispheres, guinea-pigs were injected intracisternally with 32Pi and [U-14C]glucose. After 5 min of isotopic exchange, the specific radioactivity of 32P in phosphatidylinositol was nearly equal to that in phosphatidic acid, whereas specific radioactivity of 14C in the glycerol was 1.4 times and in the fatty acids nearly 0.5 times that in the phosphatidic acid respectively, indicating metabolic heterogeneity of both phospholipids. The glycerol specific radioactivity was different in all the molecular species of phosphatidic acid being greatest in the monoenoic and least in the tetranenoic species. When the molecular species were arranged in this way, the order was representative of their relative rates of synthesis by acylation of glycerol-3-phosphate. An almost opposite order was obtained when the molecular species were arranged according to their phosphate/glycerol radioactivity ratios, indicating the relative contribution of the diacylglycerol kinase pathway to their formation. When the specific radioactivity values and ratios of phosphatidylinositol were similarly considered, the orders of the molecular species were, on the whole, similar to that of phosphatidic acid. This indicated that synthesis de novo (Paulus & Kennedy , 1960) was operative in the formation of most of its molecular species, but due to other considerations it was concluded that part of the tetraenoic, and probably the whole of saturated phosphatidylinositol may be formed by transacylation reactions. The results are discussed in terms of the experimental limitations of previous and present techniques for the analysis of phospholipid molecular species.  相似文献   

16.
The relative degradation of the various molecular species of [3H]phosphatidylcholine in response to thrombin was studied in human platelets following prelabeling with [3H]glycerol and compared to results obtained following labeling with [14C]oleic, [14C]linoleic, or [14C]arachidonic acids. This was of interest since previous work using radioactive fatty acids had led to the conclusion that the 1-acyl-2-arachidonoyl species of phosphatidylcholine is exclusively hydrolyzed in thrombin-stimulated platelets. Within 90 s, the thrombin-dependent release of [14C]arachidonic acid from phosphatidylcholine amounted to 25% but only 3 and 6% for oleic and linoleic acids, respectively, in general agreement with previous work. However, for [3H]glycerol-labeled phosphatidylcholine, all molecular species (saturates, monoenes, dienes, trienes, tetraenes, and greater than tetraenes) were subject to significant hydrolysis in the presence of thrombin within 90 s, ranging from 12-24% across the various classes. Furthermore, the degradation of the tetraenoic species (1-acyl-2-arachidonoyl) of [3H]phosphatidylcholine was found to be only 1.5 and 1.4 times that for the monoenoic (predominantly 1-acyl-2-oleoyl) and dienoic (predominantly 1-acyl-2-linoleoyl) species, respectively. A much heavier proportional labeling of plasma membrane relative to whole platelet phosphatidylcholine was observed with [3H]glycerol as compared to [14C] oleate or [14C]arachidonate. These results indicate that the 1-acyl-2-arachidonoyl species of phosphatidylcholine are not exclusively degraded by phospholipase A2 activity in thrombin-stimulated platelets and suggest that the differential compartmentation of molecular species of phosphatidylcholine according to their metabolic origins can influence their apparent susceptibility to hydrolysis.  相似文献   

17.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated with [1-14C]15-hydroxyeicosatetraenoic acid (15-HETE), a lipid mediator of inflammation, and [1-14C]arachidonic acid. Both fatty acids were taken up readily and metabolized by Caco-2 cells. [1-14C]Arachidonic acid was directly esterified in cellular phospholipids and, to a lesser extent, in triglycerides. When [1-14C]15-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, about 10% was directly esterified into cellular lipids but most (55%) was beta-oxidized to ketone bodies, CO2, and acetate, with very little accumulation of shorter carbon chain products of partial beta-oxidation. The radiolabeled acetate generated from beta-oxidation of [1-14C]15-hydroxyeicosatetraenoic acid was incorporated into the synthesis of new fatty acids, primarily [14C]palmitate, which in turn was esterified into cellular phospholipids, with lesser amounts in triglycerides. Caco-2 cells were also incubated with [5,6,8,9,11,12,14,15-3H]15-hydroxyeicosatetraenoic acid; most of the radiolabel was recovered either in ketone bodies or in [3H]palmitate esterified in phospholipids and triglycerides, demonstrating that most of the [3H]15-hydroxyeicosatetraenoic acid underwent several cycles of beta-oxidation. The binding of both 15-hydroxyeicosatetraenoic acid and arachidonic acid to hepatic fatty acid binding protein, the only fatty acid binding protein in Caco-2 cells, was measured. The Kd (6.0 microM) for 15-HETE was three-fold higher than that for arachidonate (2.1 microM).  相似文献   

18.
1-O-[3H]Alkyl-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF) and 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine ([3H]lyso-PAF) when incubated with rat polymorphonuclear leukocytes (PMN) were rapidly metabolized to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine ([3H]alkyl-acyl-GPC) containing long chain acyl groups in the sn-2 position. The specificity and the absolute requirements of arachidonate (20:4) for acylation into PAF and lyso-PAF were investigated by comparing the rate of [3H]PAF and [3H]lyso-PAF metabolism by control rat PMN with that by rat PMN depleted of 20:4. Comparable rates of metabolism of [3H]PAF and [3H]lyso-PAF by both control and 20:4-depleted PMN were observed at all the concentrations of PAF and lyso-PAF studied. The nature of the fatty acyl group incorporated into the sn-2 position of the [3H]alkyl-acyl-GPC formed was analyzed by argentation chromatography. Dienoic fatty acids were the major fatty acid incorporated into the alkyl-acyl-GPC by both control and 20:4-depleted PMN at all the incubation times studied. At 3 min of incubation with [3H]PAF and [3H]lyso-PAF, control PMN had small but significant amounts of [3H]alkyl-acyl-GPC containing tetraenoic fatty acids, the concentration of which gradually increased as the incubation time progressed. On the other hand, under similar conditions, 20:4-depleted PMN had only trace amounts of the [3H]alkyl-acyl-GPC with tetraenoic fatty acid and the concentration of which remained at the low level throughout the incubation time. At 3 min of incubation, the 20:4-depleted PMN had small but significant amounts of [3H]alkyl-acyl-GPC with saturated fatty acids, the amount of which declined by 10 min and remained at that level as the incubation time progressed. While the concentration of [3H]alkyl-acyl-GPC with dienoic fatty acids in the 20:4-depleted cells gradually increased with the progress of incubation time, these molecular species of GPC in the control PMN remained more or less constant. In spite of a very high concentration (equivalent to that of 20:4 in control PMN) of eicosatrienoic acid (20:3 delta 5,8,11) in the 20:4-depleted PMN, no significant amounts of [3H]alkyl-acyl-GPC with trienoic fatty acid were formed by these cells. The rate of metabolism of [3H]PAF and [3H]lyso-PAF by the resident macrophages isolated from control and 20:4-depleted rats was similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
This research aims to examine the effect of cadmium uptake on lipid composition and fatty acid biosynthesis, in young leaves of tomato treated seedlings (Lycopersicon esculentum cv. Ibiza F1). Results in membrane lipids investigations revealed that high cadmium concentrations affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the unsaturated fatty acid content, resulting in a lower degree of fatty acid unsaturation. The level of lipid peroxides was significantly enhanced at high Cd concentrations. Studies of the lipid metabolism using radioactive labelling with [1-14C]acetate as a major precursor of lipid biosynthesis, showed that levels of radioactivity incorporation in total lipids as well as in all lipid classes were lowered by Cd doses. In total lipid fatty acids, [1-14C]acetate incorporation was reduced in tri-unsaturated fatty acids (C16:3 and C18:3); While it was enhanced in the palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and linoleic (C18:2) acids. [1-14C]acetate incorporation into C16:3 and C18:3 of galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] and some phospholipids [phosphatidylcholine (PC) and phosphatidylglycerol (PG)] was inhibited by Cd stress. Our results showed that in tomato plants, cadmium stress provoked an inhibition of polar lipid biosynthesis and reduced fatty acid desaturation process.  相似文献   

20.
A substituted pyridazinone (BASF 13-338) inhibited photosynthesis in spinach (Spinacia oleracea, Hybrid 102 Arthur Yates Ltd.) leaf discs and reduced the incorporation of [1-14C]acetate into trienoic acids of diacylgalactosylglycerol while causing radioactivity to accumulate in diacylgalac-tosylglycerol dienoic acids. Although BASF 13-338 inhibited photosynthesis in isolated spinach chloroplasts, it did not prevent dienoate desaturation. In discs, the labeling of fatty acids was affected by the inhibitor only in diacylgalactosylglycerol. Very little radioactivity was incorporated into trienes of phosphatidylcholine and the proportion of the label recovered in the fatty acids of phosphatidylcholine was not changed by BASF 13-338. The herbicides caused an increase in the proportion of the lipid 14C incorporated into diacylgalactosylglycerol and a decrease in labeling of phosphatidylcholine, whereas the proportion of 14C recovered in other lipids remained unchanged. Similar results were obtained with pea (Pisum sativum cv. Victory Freeze), linseed (Linum usitatissimum cv. Punjab), and wheat (Triticum aestivum cv. Karamu). With these species, a greater proportion of the label was incorporated into phosphatidylcholine and less into diacylgalactosylglycerol than with spinach. The data indicate that trienoate synthesis uses diacylgalactosylglycerol as substrate. BASF 13-338 appears to act at that step, and seems to cause in spinach a shift in polyenoate synthesis from the pathway involving microsomal phosphatidylcholine to the pathway operating inside the chloroplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号