首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified cell-wall preparations from the epicotyl of etiolatedPisum sativum contain covalently bound peroxidases and hydroxyproline-richproteins. Towards the end of cell elongation there is a largerise in these wall components and thereafter a continuing slowrise which is associated with increasing age of tissue. Ethyleneat concentrations of 0.1 ppm or more increases both peroxidaseactivity and hydroxyproline levels in the walls, the greatestresponse occurring in immature tissue including the apical hook.Growth of these tissues is highly sensitive to ethylene whichcauses an inhibition of elongation in extending cells and anenhanced lateral cell expansion. We suggest that the effectsof ethylene on wall-bound peroxidase and hydroxyproline areimplicated in the ethylene regulation of cell growth. The covalently bound wall peroxidase was found to be extremelystable and to contain unique isoenzymes which do not occur ineither the cytoplasm or in the peroxidase which is ionicallybound to walls. Ethylene increases peroxidase activity in boththe cytoplasmic and the ionically bound wall fractions, butthere is little or no increase in their hydroxyproline content.The possible relationships between covalently bound wall peroxidaseand hydroxyproline are discussed and we speculate that thisperoxidase may be involved in the hydroxylation of proline inthe walls.  相似文献   

2.
Elicitation or peroxide stimulation of grape (Vitis vinifera L. cv Touriga) vine callus cultures results in the rapid and selective in situ insolubilization of an abundant and ionically bound cell wall protein-denominated GvP1. Surface-enhanced laser desorption/ionization/time of flight-mass spectrometry analysis, the amino acid composition, and the N-terminal sequence of purified GvP1 identified it as an 89.9-kD extensin. Analysis of cell walls following the in situ insolubilization of GvP1 indicates large and specific increases in the major amino acids of GvP1 as compared with the amino acids present in salt-eluted cell walls. We calculate that following deposition, covalently bound GvP1 contributes up to 4% to 5% of the cell wall dry weight. The deposition of GvP1 in situ requires peroxide and endogenous peroxidase activity. Isoelectric focusing of saline eluates of callus revealed only a few basic peroxidases that were all isolated or purified to electrophoretic homogeneity. In vitro and in situ assays of extensin cross-linking activity using GvP1 and peroxidases showed that a 40-kD peroxidase cross-linked GvP1 within minutes, whereas other grapevine peroxidases had no significant activity with GvP1. Internal peptide sequences indicated this extensin peroxidase (EP) is a member of the class III peroxidases. We conclude that we have identified and purified an EP from grapevine callus that is responsible for the catalysis of GvP1 deposition in situ during elicitation. Our results suggest that GvP1 and this EP play an important combined role in grapevine cell wall defense.  相似文献   

3.
Peroxidase active against 2,2'-azino-bis-[3-ethylbenzthiazoline-6-sulphonicacid] (ABTS) and guaiacol were found in the apoplastic fluid,as well as ionically and covalently associated with pine cellwalls. The highest activity was found covalently bound to cellwalls, while the lowest activity was in the apoplastic fluid.Both ABTS and guaiacol peroxidases increased with the hypocotylage in the three fractions, apoplastic, ionically and covalentlybound. Furthermore, the changes in both peroxidases along thehypocotyl were also studied. Both apoplastic ABTS- and guaiacol-peroxidasesincreased from the apical towards the basal region of the hypocotylsof 10-d-old seedlings. A relation between peroxidase activityin the apoplastic fluid and the cell wall stiffening in pinehypocotyls is proposed.Copyright 1995, 1999 Academic Press Cell wall, growth, hypocotyl, peroxidase, pine, Pinus pinaster Aiton  相似文献   

4.
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium.  相似文献   

5.
P. Schloß  C. Walter  M. Mäder 《Planta》1987,170(2):225-229
Vacuoles of tobacco mesophyll and of suspension-cultured cells were isolated in order to study the localization of peroxidase isoenzymes. Only basic peroxidases were detectable by electrophoretic separation of the vacuolar sap. Some of the basic peroxidases have formerly been described as an ionically bound cell-wall fraction. This fraction, however, was found to be an artifact produced by incomplete cell breakage. Reinvestigation of isolated cell walls confirmed that mainly acidic peroxidases are localized in the cell walls where they move freely or are bound. As a consequence of former and present results we think it probable that all of the peroxidase isoenzymes are secretory proteins because they have to be transported from the sites of synthesis in the cytoplasm to the sites of function, the extracytoplasmic spaces, cell wall (acidic peroxidases), and vacuole (basic peroxidases).Abbreviation ER endoplasmic reticulum - PAGE polyacrylamide gel electrophoresis  相似文献   

6.
The apoplastic fluid of pine ( Pinus pinaster Aiton) hypocotyls contains ascorbic acid (AA) and dehydroascorbic acid (DHA). The amounts of ascorbic and dehydroascorbic acids were in the nmol (g fresh weight)−1 range and decreased with the hypocotyl age as well as along the hypocotyl axis. The ratio AA/(AA+DHA) also decreased with the hypocotyl age and along the hypocotyl. Both ascorbic oxidase and peroxidase activity against ascorbic acid showed very low activity not only in the apoplastic fluid but also in the fractions ionically and covalently bound to the cell walls. However, the peroxidase activity in the three abovementioned fractions was strongly increased in the presence of ferulic acid. That stimulation effect increased with the hypocotyl age and from the apical towards the basal region of the hypocotyls of 10-day-old seedlings. Furthermore, the oxidation of ferulic acid by apoplastic and ionically- and covalently-bound peroxidases was inhibited by ascorbic acid as long as ascorbate was available. A regulatory role of apoplastic ascorbic acid levels in the formation of dehydrodiferulic bridges between wall polysaccharides catalysed by cell wall peroxidases and thus in the cell wall stiffening during plant growth is proposed.  相似文献   

7.
In a culture system in which single cells isolated from the mesophyll of Zinnia elegans L. differentiate to tracheary elements (TEs), two inhibitors of phenylalanine ammonia-lyase (EC 4.3.1.5), L-α-aminooxy-β-phenylpropionic acid (AOPP) at 10 μM inhibited lignification without reducing the number of TEs formed. These inhibitors caused intracellular changes in peroxidase (EC 1.11.1.7) activities. The inhibitors increased the activity of peroxidases bound to the cell walls and especially the activity of peroxidase bound ionically to the cell walls. In contrast, the activity of extracellular peroxidase decreased. There were five isoenzymes, P1-P5, in the ionically bound peroxidase of cultured Zinnia cells. Among the isoenzymes, P4 and P5 appeared to be specific for TE differentation. Treatment with AOPP and AIP resulted in increases in the activities of P2, P4 and P5 isoenzymes, with the most prominent increase in P5 activity. The addition of lignin precursors, including coniferyl alcohol, to the AOPP-treated cells restored lignification, and suppressed the alteration of peroxidase isoenzyme patterns caused by AOPP. The relationship between the wall-bound peroxidases and lignification during TE differentiation is discussed in the light of these results.  相似文献   

8.
In ectomycorrhizae auxins are proposed to attenuate elicitor-induced defence reactions in the host plant. To examine this hypothesis we compared the elicitor-induced accumulation of peroxidase isoforms between suspension-cultured spruce (Picea abies[L.] Karst.) cells incubated in media with and without auxins. In spruce cells changes in ionically and covalently wall-bound as well as symplasmic peroxidase (EC 1.11.1.7) activities were observed when elicitors from the following fungal species were applied: (1) Hebeloma crustuliniforme, an ectomycorrhizal partner of spruce; (2) Suillus variegatus, an ectomycorrhizal fungus incompatible with spruce; (3) Heterobasidion annosum, a spruce pathogen. Activity staining after SDS-PAGE and western blotting showed an accumulation of an ionically wall-bound 38-kDa peroxidase isoform. In addition, two covalently wall-bound isoforms (34 and 53 kDa) that could be released from spruce cell walls by cellulase and pectinase treatment were also induced by elicitors from these fungi. Moreover, in cells cultured without auxins all the elicitors triggered a rapid and transient accumulation of ionically wall-bound peroxidases, which reached a maximum activity 48 h after elicitor application. This early and transient peroxidase accumulation was diminished and delayed in cells cultured in the presence of auxins. In contrast, activity of peroxidases released into the culture medium of spruce cells or into the medium of protoplasts was suppressed by the elicitors of Hebeloma crustuliniforme. However, this suppression was attenuated by the action of auxins. It is suggested that under natural conditions, in infected spruce roots, the elicitors of the compatible fungus cause both suppression of the peroxidase (which is secreted to the free space of the roots), and induction of wall-bound and symplasmic peroxidases. On the other hand, auxins synthesized by the fungus could weaken these different elicitor-mediated effects.  相似文献   

9.
《Phytochemistry》1986,25(6):1271-1274
Cytoplasmic and wall bound peroxidases were extracted from successive segments of decreasing growth potential along the mung bean hypocotyl. Active wall bound peroxidases were present in the epidermis and external parenchyma layers at the end of the elongation phase. Two fast migrating anionic isoperoxidases covalently bound to the cell walls increased when the cell walls lost their plasticity. These isoenzymes were characterized by a high affinity for several peroxidase substrates and high thermal stability.  相似文献   

10.
Young leaves of two corn (Zea mays) inbreds with normal and Texas male-sterile cytoplasm, which differed in their susceptibility to Helminthosporium maydis Nisikado and Miyake race T, showed no significant qualitative or quantitative differences in their isoperoxidase patterns. Of six cathodic and four anodic isoenzymes present in the soluble fraction, four and two, respectively, comprised the fraction ionically bound to the cell wall. Peroxidase fractions ionically and covalently bound to the wall constituted about 20% of the total peroxidase activity. No new isoperoxidases were detected in either inbred line in response to cutting, infection, or detachment only and exposure to darkness for 40 hours. Three isoperoxidases, all cathodic, mainly reacted to cutting injury as well as fungal infection. One of the isoperoxidases appeared responsible for the increase in the peroxidase activity of the soluble fraction while the other two were responsible for the increase in that of the fraction ionically bound to the walls. The relative increase in the latter fraction was greater for infected leaves than for mechanically injured ones. No significant differences were found between the two inbreds in their peroxidase reactions to cutting injury or infection. Thus, the corn leaf isoperoxidases were distinctive in their distribution in the cell and in their reaction to injury. Changes in their activity induced by infection may result from a nonspecific response to injury.  相似文献   

11.
Changes in four peroxidase activity fractions (soluble, membrane-bound, as well as ionically and covalently bound) were studied during development of juvenile and adult avocado leaves. Greater differences were found in the soluble fraction with an increase in total activity at the end of the growth phase. In relation to the ontogenetic stages, there were significant variations in the soluble peroxidase activity of both stages, especially in leaves which have already detained their growth, 263 U/g fresh wt in adult leaves vs. 70 U/g fresh wt juvenile leaves. Moreover, the isozyme profile of this fraction revealed the appearance of an anionic band, Rf 0.35, at much earlier stages in juvenile than in adult leaves. Concerning the other three fractions, there were no marked changes in total activity of either membrane-bound or ionically and covalently bound peroxidases. However, in the isoenzyme profiles of the ionically bound fraction of juvenile leaves, three highly cationic bands appeared at much earlier stages than in adult leaves. In avocado, attempts to use leaf peroxidase activity as marker of ontogenetic age must be taken with caution, since great fluctuations related with developmental stages occur in juvenile and adult leaves.  相似文献   

12.
Cessation of cell expansion has been associated with cell wall cross-linking reactions catalyzed by peroxidase. This study utilized two genotypes of tall fescue (Festuca arundinacea Schreb.) that differ in length of the leaf elongation zone to investigate the relationship between ionically bound peroxidase activity and the spatial distribution of leaf elongation. Peroxidase activity was also localized histochemically in transverse sections of the leaf blade using 3,3′ -diaminobenzidine. Soluble or soluble plus ionically bound peroxidase activities were extracted from homogenized segments of the elongating leaf blade and assayed spectrophotometrically. Activity of the ionically bound fraction, expressed per milligram fresh weight or per microgram protein, increased as cells were displaced through the distal half of the elongation zone, corresponding to the region in which the elongation rate declined. In both genotypes, the initial increase in activity preceded the onset of growth deceleration by about 10 hours. In the basal region where elongation began, histochemical localization showed that peroxidase activity was found only in vascular tissues. As cells were displaced farther through the elongation zone, peroxidase activity appeared in walls of other longitudinally continuous tissues such as the epidermis and bundle sheaths. Increase in ionically bound peroxidase activity and changes in localization of peroxidase activity occurred at comparable developmental stages in the two genotypes. The results indicate that cessation of elongation followed an increase in cell wall peroxidase activity.  相似文献   

13.
In previous research, an in vitro stepwise procedure permitted us to obtain Nicotiana tabacum regenerated plant lines able to grow in the presence of Mn at 2 and 5 mM (Mn-tolerant plants). These plants showed several morpho-physiological and cytological differences in comparison to the Mn-sensitive regenerated plants. In particular, the number of xylem cells and the degree of lignification appeared to be influenced differently by these Mn concentrations. In the present work these Mn-tolerant and Mn-sensitive N. tabacum plants, maintained in the presence of Mn 2 and 5 mM, have been characterized with regards to the uptake of Mn and Fe, the activity of extracellular peroxidases in the stems, and the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in the leaves. The leaf response to an increasing Mn concentration in the medium, corresponded a parallel decrease of Fe content. Plants tolerant of 5 mM Mn showed almost a doubling Mn content over that of the 5 mM Mn-sensitive plants. In the stem, 2 and 5 mM Mn inhibited the extracellular free peroxidases (guaiacol peroxidases) either in the Mn-tolerant plants or in the Mn-sensitive plants. In the Mn-sensitive plants treated with 2 mM Mn the activity of the peroxidases of the ionically and covalently bound wall peroxidases was also depressed. In 5 mM Mn-tolerant plants, an enhanced activity of the covalently bound wall peroxidases was observed. The effect of Mn on the covalently bound wall syringaldazine peroxidases was identical to that observed in the guaiacol peroxidases; the activity was significantly higher in the Mn-tolerant plants grown in the presence of 5 mM Mn. In the leaf, the increase of Mn content inhibited the activity of guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in the Mn-tolerant as well as in the Mn-sensitive plants. However, the effect was greater in the Mn-sensitive plants. Only glutathione reductase did not show significant variation except for the 2 mM Mn-sensitive plants, where an increased activity was detected.  相似文献   

14.
The mammalian peroxidases, including myeloperoxidase and lactoperoxidase, bind their prosthetic heme covalently through ester bonds to two of the heme methyl groups. These bonds are autocatalytically formed. No other peroxidase is known to form such bonds. To determine whether features other than an appropriately placed carboxylic acid residue are important for covalent heme binding, we have introduced aspartate and/or glutamic acid residues into horseradish peroxidase, a plant enzyme that exhibits essentially no sequence identity with the mammalian peroxidases. Based on superposition of the horseradish peroxidase and myeloperoxidase structures, the mutated residues were Leu(37), Phe(41), Gly(69), and Ser(73). The F41E mutant was isolated with no covalently bound heme, but the heme was completely covalently bound upon incubation with H(2)O(2). As predicted, the modified heme released from the protein was 3-hydroxymethylheme. The S73E mutant did not covalently bind its heme but oxidized it to the 8-hydroxymethyl derivative. The hydroxyl group in this modified heme derived from the medium. The other mutations gave unstable proteins. The rate of compound I formation for the F41E mutant was 100 times faster after covalent bond formation, but the reduction of compound I to compound II was similar with and without the covalent bond. The results clearly establish that an appropriately situated carboxylic acid group is sufficient for covalent heme attachment, strengthen the proposed mechanism, and suggest that covalent heme attachment in the mammalian peroxidases relates to peroxidase biology or stability rather than to intrinsic catalytic properties.  相似文献   

15.
16.
Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed.  相似文献   

17.
A plant regeneration system through multiple adventitious shoot differentiation from callus cultures has been established in slash pine (Pinus elliottii). Influences of seven different basal media on callus induction, adventitious shoot formation, and rooting were investigated. Among the different basal media, B5, SH, and TE proved to be suitable for callus induction and plantlet regeneration. Multiple adventitious shoot formation was obtained from callus cultures of slash pine on B5, SH, and TE media containing indole-3-butyric acid, N6-benzyladenine, and thidiazuron. Scanning electron microscopy demonstrated the early development of adventitious shoots derived from callus cultures. These results indicate that an efficient plant regeneration protocol for micropropagation of slash pine had been established. This protocol could be most useful for future studies on genetic transformation of slash pine.  相似文献   

18.
Birecka H 《Plant physiology》1978,61(4):561-566
Mechanical injury or infection with Helminthosporium maydis race T or O enhanced peroxidase activity in leaves of two corn inbreds which differ in their susceptibility to the fungal race T. Increases in activity were found in the soluble fraction extracted from tissues with 20 mm phosphate buffer (pH 6), and in the ionically bound fraction extracted from wall debris with 0.6 to 1 m NaCl; the covalently bound wall peroxidase fraction was unaffected. Mechanical injury and infection with either race enhanced the same distinctive cathodic isoforms present in the soluble fraction or in both the soluble and ionically bound fractions.  相似文献   

19.
MURMANIS  LIDIJA 《Annals of botany》1971,35(1):133-141
The changes in the ultrastructure of cambial cells of easternwhite pine (Pinus strobus L.) during an annual cycle are observedand recorded as are relationships of cambial cells during dormancyand at resumption of cambial activity. Cambial activity wasresumed late in March or early in April, when a few cells dividedpericlinally. Cambial activity reached a maximum during thelatter part of May with 15 to 20 undifferentiated cells present.In July it declined markedly, and the number of undifferentiatedcells equalled that of the dormant period. The xylem and phloemtissue cells produced late in the annual cycle overwinteredat varying developmental stages. In October cambial cells structurallyresembled dormant cells. The number of dormant cells in easternwhite pine cambium varied from 6 to 10. Active cells were characterizedby a large central vacuole, by an abundance of all cell organelles,and by thin cell walls. Dormant cells were characterized bynumerous small vacuoles, by structurally and quantitativelymodified cell organelles, and by relatively thick cell walls.  相似文献   

20.
Sánchez, O.J., Pan, A., Nicolás, G. and Labrador, E. 1989. Relation of cell wall peroxidase activity with growth in epicotyls of Cicer arietinum. Effects of calmodulin inhibitors.
Peroxidases are bound ionically to cell walls in epicotyls of Cicer arietinum L. cv. Castellana. The cell wall peroxidase activity increases during the growth of epicotyls, being the lowest in 3-day-old epicotyls with high growth capacity. The cell wall phenolic compounds, postulated natural substrates of cell wall peroxidases, also increase during growth.
The calmodulin inhibitors chlorpromazine and trifluoperazine decrease the elongation rate of epicotyls of Cicer arietinum. These inhibitors also cause an increase in the cell wall peroxidase activity and in the level of phenolic compounds. A possible regulatory effect of calmodulin on peroxidase activity is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号