首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant transformation is accompanied by altered cell surface glycosylation. N-Linked oligosaccharides carrying beta1-6GlcNAc branches are associated with tumor invasion and metastasis. Therefore, compounds that can enter cells and block biosynthesis of beta1-6GlcNAc-branched glycans without overt cytotoxicity are potential anticancer agents. We have developed a homogeneous cell-based assay for detection of such compounds. The method enables identification of agents that block beta1-6GlcNAc-branched glycan expression after incubation for 16-20 h with MDAY-D2 tumor cells, thereby protecting the cells from the subsequent addition of leukoagglutinin, a cytotoxic plant lectin. We observed that MDAY-D2 cell number is directly proportional to the level of endogenous alkaline phosphatase activity measured spectrophotometrically in cultures after the addition of substrate. The alkaline phosphatase assay was capable of detecting as few as 1,500 cells. The assay was readily adapted for high-throughput screening as reagent costs are low and no cell harvesting and washing steps are required. Under high-throughput operating conditions, the coefficient of variation for controls was found to be 4.2%. The results suggest that measurement of alkaline phosphatase in this cell assay format may be adapted for wider applications in high-throughput screenings for compounds that relieve cells from other growth inhibitors.  相似文献   

2.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of 8 molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C55-undecaprenyl pyrophosphate, which is required for bacterial cell wall synthesis. UPPS is found in both gram-positive and gram-negative bacteria, and based on the differences between bacterial variants of UPPS and their human counterpart, dolicopyrophosphate synthase, it was identified as an attractive antibacterial target. An assay, which monitors the release of Pi by coupling the UPPS catalyzed reaction with inorganic pyrophosphatase, was employed to conduct an HTS campaign using an inhouse collection of compounds. A direct assay measuring the incorporation of 14C-IPP (isopentenyl pyrophosphate) was used as a secondary assay to evaluate the high-throughput screening (HTS) hits. From the HTS campaign, a few classes of UPPS inhibitors were identified. During the process of hit evaluation by the direct assay, the authors observed that Triton, an essential factor for the enzyme activity and accurate formation of the natural product, dramatically altered the inhibitory activity of a particular class of compounds. Above its critical micellar concentration (CMC), Triton abolished the inhibitory activity of these compounds. Further research will be required to establish the biophysical phenomenon that causes this effect. Meanwhile, it can be speculated that Triton (and other detergents) above CMC may hinder the identification in screening compounds of certain classes of hits.  相似文献   

3.
4.
Fungal cell wall synthesis is essential for viability, requiring the activity of genes involved in environmental sensing, precursor synthesis, transport, secretion, and assembly. This multitude of potential targets, the availability of known agents targeting this pathway, and the unique nature of fungal cell wall synthesis make this pathway an appealing target for drug discovery. Here we describe the adaptation of an assay monitoring cell wall synthesis for high-throughput screening. The assay requires fungal cell growth, in the presence of the test compound, for 3 h before the cells are subjected to osmotic shock in the presence of a dye that stains DNA. Miniaturization of the assay to a 384-well plate format and removing a mechanical transfer led to subtle changes in the assay characteristics. Validation of the assay with a library of known pharmacologically active agents has identified a number of different classes of compounds that are active in this assay, causing aberrant cell wall morphology and in many cases the inhibition of fungal cell growth.  相似文献   

5.
The authors describe a homogeneous, high-throughput screening (HTS) assay for measuring protease activity and detection of inhibitors. The assay comprises a cyclic beta-galactosidase (beta-gal) enzyme donor peptide (ED) containing a protease-selective cleavage sequence. Alone, the cyclic peptide is inactive, but when linearized following protease cleavage, ED complements with beta-gal enzyme acceptor forming active beta-gal enzyme. This then catalyzes the formation of either fluorescent or chemiluminescent products, with beta-gal turnover providing a highly amplified signal, and thus an assay technology of high sensitivity. To demonstrate the utility of the technology, an EFC assay was developed to measure the activity of 2, caspase 3 and beta-secretase. Using a cyclic ED containing the caspase 3 substrate sequence, DEVD, the EFC assay signal was linear with respect to caspase 3 concentration. The assay was very sensitive, being able to detect activity at low picogram amounts of caspase 3. For the beta-secretase (BACE) EFC assay, a cyclic ED containing the Swedish mutant cleavage site of amyloid precursor protein (APP), SEVNLDAEFK, was used. In a similar fashion to the caspase 3 assay, the signal induced by BACE activity was linear with respect to enzyme concentration and was highly sensitive, being able to detect nanogram quantities of BACE. The assay was also more sensitive than a commercially available FRET-based assay of BACE activity. It is concluded that the EFC protease assay is a simple, flexible, and sensitive technology for HTS of proteases.  相似文献   

6.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

7.
Caspase-6 is a cysteinyl protease implicated in neurodegenerative conditions including Alzheimer's and Huntington's disease making it an attractive target for therapeutic intervention. A greater understanding of the role of caspase-6 in disease has been hampered by a lack of suitable cellular assays capable of specifically detecting caspase-6 activity in an intact cell environment. This is mainly due to the use of commercially available peptide substrates and inhibitors which lack the required specificity to facilitate development of this type of assay. We report here a 384-well whole-cell chemiluminescent ELISA assay that monitors the proteolytic degradation of endogenously expressed lamin A/C during the early stages of caspase-dependent apoptosis. The specificity of lamin A/C proteolysis by caspase-6 was demonstrated against recombinant caspase family members and further confirmed in genetic deletion studies. In the assay, plasma membrane integrity remained intact as assessed by release of lactate dehydrogenase from the intracellular environment and the exclusion of cell impermeable peptide inhibitors, despite the induction of an apoptotic state. The method described here is a robust tool to support drug discovery efforts targeting caspase-6 and is the first reported to specifically monitor endogenous caspase-6 activity in a cellular context.  相似文献   

8.
A novel cell-based functional assay to directly monitor G protein-coupled receptor (GPCR) activation in a high-throughput format, based on a common GPCR regulation mechanism, the interaction between beta-arrestin and ligand-activated GPCR, is described. A protein-protein interaction technology, the InteraX trade mark system, uses a pair of inactive beta-galactosidase (beta-gal) deletion mutants as fusion partners to the protein targets of interest. To monitor GPCR activation, stable cell lines expressing both GPCR- and beta-arrestin-beta-gal fusion proteins are generated. Following ligand stimulation, beta-arrestin binds to the activated GPCR, and this interaction drives functional complementation of the beta-gal mutant fragments. GPCR activation is measured directly by quantitating restored beta-gal activity. The authors have validated this assay system with two functionally divergent GPCRs: the beta2-adrenergic amine receptor and the CXCR2 chemokine-binding receptor. Both receptors are activated or blocked with known agonists and antagonists in a dose-dependent manner. The beta2-adrenergic receptor cell line was screened with the LOPAC trade mark compound library to identify both agonists and antagonists, validating this system for high-throughput screening performance in a 96-well microplate format. Hit specificity was confirmed by quantitating the level of cAMP. This assay system has also been performed in a high-density (384-well) microplate format. This system provides a specific, sensitive, and robust methodology for studying and screening GPCR-mediated signaling pathways.  相似文献   

9.
In the new high-throughput screening (HTS) campaign, receptor functional assays, 3',5'-cyclic adenosine monophosphate (cAMP), intracellular [Ca(2)+](i), phosphatidylinositol turnover, and reporter-based assays are being used as primary screens as they are now developed as homogeneous and automation-friendly assays. FlashPlate assay and scintillation proximity assay using radiolabeled cAMP have been used for measuring cAMP. A nonradioactive homogeneous HTS assay using HitHunter trade mark enzyme fragment complementation (EFC) technology was evaluated for measuring cAMP in adherent and suspension cells overexpressing a Galpha(s)-coupled receptor. In the EFC-cAMP assay, the beta-galactosidase (beta-gal) donor fragment-cAMP (ED-cAMP) conjugate complements with the beta-gal enzyme acceptor (EA) fragment to form an active beta-gal enzyme. Binding of ED-cAMP conjugate to the anti-cAMP antibody prevents its complementation with the EA fragment to form an active enzyme. Cyclic AMP in the samples compete with ED-cAMP to bind to the anti-cAMP antibody, thus increasing the free ED-cAMP that can complement with the EA fragment to form an active enzyme that is assayed with a luminescent substrate. Thus, this assay results in a positive signal unlike other technologies, wherein the signal is completed by cAMP in the sample. Glucagon-like peptide (GLP)-1 binds to GLP-1 receptor (with a Kd of 0.2 nM) signals through Galpha(s) to activate adenylate cyclase, which results in an increase of intracellular cAMP (EC(50) of 0.3 nM). GLP-1 stimulation of cAMP levels measured by the EFC method was similar in both adherent and suspension cell formats (EC(50)~0.3 nM) at different cell numbers. The assay was further validated with forskolin, exendin, and several active GLP-1 peptide analogues. The stimulation of cAMP by GLP-1 and forskolin was effectively inhibited by the adenylate cyclase inhibitors MDL-12330A and SQ-22536, confirming that the increased cAMP is through the AC pathway. The assay tolerates dimethyl sulfoxide (DMSO) up to 10%, and tartrazine does not interfere with the assay with the adherent cells up to 1 mM and affects minimally up to 10 microM in suspension cells. The assay is very robust, with a Z' value of 0.7 to 0.8. The assay was validated with several plates of low molecular weight nonpeptide compounds and peptide agonists with different potencies. The suspension cell protocol is a robust homogeneous assay that involves fewer steps than the adherent cell protocol and is suitable for HTS. The cAMP assay using EFC technology is advantageous in that it has a greater dynamic range of detection; is nonradioactive, very sensitive, robust; has minimal interference from DMSO and colored compounds; and is amenable for automation. An added advantage of this assay is that the cAMP is measured as a positive signal, thereby reducing the incidence of false positives.  相似文献   

10.
11.
We present a method for monitoring receptor dimerization at the membrane of live cells. Chimeric proteins containing the epidermal growth factor (EGF) receptor extracellular and transmembrane domains fused to weakly complementing beta-galactosidase (beta-gal) deletion mutants were expressed in cells in culture. Treatment of the cells with EGF-like compounds for as little as 15 s resulted in chimeric receptor dimerization detectable as beta-gal enzymatic activity. The dose response of chimeric receptors was ligand specific. beta-galactosidase complementation was reversible upon removal of ligand and could be reinduced. Antibodies that block ligand binding inhibited receptor dimerization and beta-gal complementation. These results demonstrate that beta-gal complementation provides a rapid, simple, and sensitive assay for protein interactions and for detecting and monitoring the kinetics of receptor dimerization.  相似文献   

12.
Ten strains of Propionibacterium shermanii were tested for beta-galactosidase (beta-gal) activity. Of these ten strains, five yielded enhanced enzyme activity when cell suspensions were treated with toluene-acetone; on solvent treatment, the remaining five lost a considerable portion of the activity found in whole-cell suspensions. By using a strain yielding decreased activity upon solvent treatment, explanations for the loss in activity were sought through assays for possible alternative beta-galactoside utilization mechanisms. When this strain was assayed for beta-D-phosphogalactoside galactohydrolase by using orthonitrophenyl-beta-D-galactopyranoside-6-P04 as a substrate, the activity was wither lower or indiffernt as compared with beta-gal activity determined simultaneously. Cell suspensions of P. shermanii 7 and 22 (strains chosen for further work) grown separately on the individual substrates (lactose, glucose, galactose, and sodium lactate) did not show significant differences in beta-gal activity. Optimal temperature for beta-gal activity in untreated and toluene-acetone-treated cell suspensions of strain 7 was 52 C. With strain 22, of the temperatures tested, maximal activity in untreated cell suspensions was noted at 58 C and with solvent-treated cells at 32 C. In the cell-free extract (CFE) system, both strains exhibited maximal activity at 52 C. Optimal pH for untreated and solvent-treated cell suspensions of both strains was around 7.5. In the P. shermanii 22 CFE system, maximal activity occurred at pH 7.0; pH had very little effect on enzyme activity in P. shermanii 7 CFE. Sodium or potassium phosphate buffers in the assay system yielded the best activity. In the CFE system of these two strains, Mn2+ was definitely stimulatory, but in untreated and solvent-treated cell systems of these strains presence or absence of Mn2+ in the assay system had variable effects on enzyme activity. Maximal beta-gal activity was noted in P. shermanii 7 cells harvested after 28 h of growth at 32 C in sodium lactate broth. Sulfhydryl-group blocking agents inhibited enzyme activity in P. shermanii 22 CFE; the inhibition was partly reversed by dithiothreitol.  相似文献   

13.
A high-throughput mass spectrometry assay to measure the catalytic activity of phosphatidylserine decarboxylase (PISD) is described. PISD converts phosphatidylserine to phosphatidylethanolamine during lipid synthesis. Traditional methods of measuring PISD activity are low throughput and unsuitable for the high-throughput screening of large compound libraries. The high-throughput mass spectrometry assay directly measures phosphatidylserine and phosphatidylethanolamine using the RapidFiretrade mark platform at a rate of 1 sample every 7.5 s. The assay is robust, with an average Z' value of 0.79 from a screen of 9920 compounds. Of 60 compounds selected for confirmation, 54 are active in dose-response studies. The application of high-throughput mass spectrometry permitted a high-quality screen to be performed for an otherwise intractable target.  相似文献   

14.
15.
Development of novel anti-cancer drug leads that target regulators of protein homeostasis is a formidable task in modern pharmacology. Finding specific inhibitors of human Heat Shock Factor 1 (hHSF1) has proven to be a challenging task, while screening for inhibitors of human Heat Shock Factor 2 (hHSF2) has never been described. We report the development of a novel system based on an in vivo cell growth restoration assay designed to identify specific inhibitors of human HSF2 in a high-throughput format. This system utilizes a humanized yeast strain in which the master regulator of molecular chaperone genes, yeast HSF, has been replaced with hHSF2 with no detrimental effect on cell growth. This replacement preserves the general regulatory patterns of genes encoding major molecular chaperones including Hsp70 and Hsp90. The controlled overexpression of hHSF2 creates a slow-growth phenotype, which is the basis of the growth restoration assay used for high-throughput screening. The phenotype is most robust when cells are cultured at 25 °C, while incubation at temperatures greater than 30 °C leads to compensation of the phenotype. Overexpression of hHSF2 causes overexpression of molecular chaperones which is a likely cause of the slowed growth. Our assay is characterized by two unique advantages. First, screening takes place in physiologically relevant, in vivo conditions. Second, hits in our screen will be of medically relevant potency, as compounds that completely inhibit hHSF2 function will further inhibit cell growth and therefore will not be scored as hits. This caveat biases our screening system for compounds capable of restoring hHSF2 activity to a physiologically normal level without completely inhibiting this essential system.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0605-0) contains supplementary material, which is available to authorized users.  相似文献   

16.
More than 20% of bacterial proteins are noncytoplasmic, and most of these pass through the SecYEG channel en route to the periplasm, cell membrane, or surrounding environment. The Sec pathway, encompassing SecYEG and several associated proteins (SecA, SecB, YidC, SecDFYajC), is of interest as a potential drug target because it is distinct from targets of current drugs, is essential for bacterial growth, and exhibits dissimilarities in eukaryotes and bacteria that increase the likelihood of selectively inhibiting the microbial pathway. As a step toward validating the pathway as a drug target, we have adapted a mechanism-based whole-cell assay in a manner suitable for high-throughput screening (HTS). The assay uses an engineered strain of Escherichia coli that accumulates beta-galactosidase (β-gal) in its cytoplasm if translocation through SecYEG is blocked. The assay should facilitate rapid identification of compounds that specifically block the Sec pathway because widely, toxic compounds and nonspecific protein synthesis inhibitors prevent β-gal production and thus do not register as hits. Testing of current antibiotics confirmed that they do not generally act through the Sec pathway. A mini-screen of 800 compounds indicated the assay's readiness for larger screening projects.  相似文献   

17.
We describe the synthesis of a series of low molecular weight inhibitors of the alphavbeta3 integrin obtained by modifying a high-throughput screening hit with micromolar activity. A solid phase synthesis to prepare 3-phenylthio-3-nicotinyl propionic acid derivatives, exemplified by 13c, was set up. Compounds with nanomolar activity in the biochemical assay and able to efficiently inhibit cell adhesion mediated by vitronectin have been obtained.  相似文献   

18.
Mycobacterium tuberculosis dTDP-d-glucose 4,6-dehydratase (RmlB) is the second enzyme for the biosynthesis of dTDP-l-rhamnose, which is a sugar donor to the synthesis of the cell wall linker, d-N-acetylglucosamine-l-rhamnose. RmlB is essential to mycobacterial growth and is not found in humans; therefore, it is a potential target for developing new anti-tuberculosis drugs. So far, there has been no suitable method for high-throughput screening of RmlB inhibitors. Here, the recombinant M. tuberculosis RmlB was purified and an absorbance-based microtiter plate assay was developed for RmlB activity. It could be used for high-throughput screening of RmlB inhibitors. The kinetic properties of M. tuberculosis RmlB, including optimal pH, optimal temperature, the effect of metal ions, and the kinetic parameters, were determined with this assay. The inhibitory effects of dTTP and dTDP on M. tuberculosis RmlB were also studied with the assay.  相似文献   

19.
We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5′-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3′-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.  相似文献   

20.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号