首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purified ermC methyltransferase described here incorporates two methyl groups per Bacillus subtilis 23S rRNA molecule in vitro. The Km for S-adenosyl-L-methionine was 12 microM, and for B. subtilis 23S rRNA the Km was 375 nM. In vivo methylation specified by several related resistance determinants prevented in vitro methylation by the ermC enzyme, suggesting that methylation specified by all of these determinants occurs at homologous sites. Since methyl groups were incorporated in protein-free 23S rRNA molecules, the structure of rRNA alone must contain sufficient information to specify the methylation site.  相似文献   

2.
The rRNA methyltransferase ErmC' transfers methyl groups from S -adenosyl-l-methionine to atom N6 of an adenine base within the peptidyltransferase loop of 23 S rRNA, thus conferring antibiotic resistance against a number of macrolide antibiotics. The crystal structures of ErmC' and of its complexes with the cofactor S -adenosyl-l-methionine, the reaction product S-adenosyl-l-homocysteine and the methyltransferase inhibitor Sinefungin, respectively, show that the enzyme undergoes small conformational changes upon ligand binding. Overall, the ligand molecules bind to the protein in a similar mode as observed for other methyltransferases. Small differences between the binding of the amino acid parts of the different ligands are correlated with differences in their chemical structure. A model for the transition-state based on the atomic details of the active site is consistent with a one-step methyl-transfer mechanism and might serve as a first step towards the design of potent Erm inhibitors.  相似文献   

3.
The ermC gene of plasmid pE194 specifies resistance to the macrolidelincosamide-streptogramin B antibiotics. This resistance, as well as synthesis of the 29,000 dalton protein product of ermC, has been shown to be induced by erythromycin. Weisblum and his colleagues have established that macrolide resistance is associated with a specific dimethylation of adenine in 23 S rRNA. We show that pE194 specifies an RNA methylase that can utilize either 50 S ribosomes or 23 S rRNA as substrates. Synthesis of this methylase is induced by low concentrations of erythromycin, and the enzyme is produced in elevated amounts by strains carrying a high copy number mutant of pE194. The methylase comigrates with the 29K ermC product on polyacrylamide gels. The purification and some properties of this methylase are described.  相似文献   

4.
M Zalacain  E Cundliffe 《Gene》1991,97(1):137-142
In addition to tlrA, tlrB and tlrC, which were previously cloned by others, a fourth antibiotic-resistance gene (tlrD) has been isolated from Streptomyces fradiae, a producer of tylosin (Ty), and cloned in Streptomyces lividans. Like tlrA, tlrD encodes an enzyme that methylates the N6-amino group of the A2058 nucleoside within 23S ribosomal RNA. However, whereas the tlrA protein dimethylates that nucleoside, the tlrD product generates N6-monomethyladenosine. The genes also differ in their mode of expression: tlrA is inducible, whereas tlrD is apparently expressed constitutively, and it has been confirmed that the tlrA-encoded enzyme can add a second methyl group to 23S rRNA that has already been monomethylated by the tlrD-encoded enzyme. Presumably, that is what happens in S. fradiae.  相似文献   

5.
Methylation of the N1 position of nucleotide G745 in hairpin 35 of Escherichia coli 23 S ribosomal RNA (rRNA) is mediated by the methyltransferase enzyme RrmA. Lack of G745 methylation results in reduced rates of protein synthesis and growth. Addition of recombinant plasmid-encoded rrmA to an rrmA-deficient strain remedies these defects. Recombinant RrmA was purified and shown to retain its activity and specificity for 23 S rRNA in vitro. The recombinant enzyme was used to define the structures in the rRNA that are necessary for the methyltransferase reaction. Progressive truncation of the rRNA substrate shows that structures in stem-loops 33, 34 and 35 are required for methylation by RrmA. Multiple contacts between nucleotides in these stem-loops and RrmA were confirmed in footprinting experiments. No other RrmA contact was evident elsewhere in the rRNA. The RrmA contact sites on the rRNA are inaccessible in ribosomal particles and, consistent with this, 50 S subunits or 70 S ribosomes are not substrates for RrmA methylation. RrmA resembles the homologous methyltransferase TlrB (specific for nucleotide G748) as well as the Erm methyltransferases (nucleotide A2058), in that all these enzymes methylate their target nucleotides only in the free RNA. After assembly of the 50 S subunit, nucleotides G745, G748 and A2058 come to lie in close proximity lining the peptide exit channel at the site where macrolide, lincosamide and streptogramin B antibiotics bind.  相似文献   

6.
The ErmE methyltransferase from the erythromycin-producing actinomycete Saccharopolyspora erythraea dimethylates the N-6 position of adenine 2058 in domain V of 23S rRNA. This modification confers resistance to erythromycin and to other macrolide, lincosamide, and streptogramin B antibiotics. We investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance to erythromycin and clindamycin. The degree of resistance corresponds to the level of ermE expression. In turn, ermE expression also correlates with the proportion of 23S rRNA molecules that are dimethylated at adenine 2058. The methyltransferase was isolated in an active, concentrated form from E. coli, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been disrupted by removal of magnesium ions. We conclude that the main features that are specifically recognized by the ErmE methyltransferase are displayed within the primary and secondary structures of 23S rRNA domain V.  相似文献   

7.
ErmC' is a methyltransferase that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics by catalyzing the methylation of 23S rRNA at a specific adenine residue (A-2085 in Bacillus subtilis; A-2058 in Escherichia coli). The gene for ErmC' was cloned and expressed to a high level in E. coli, and the protein was purified to virtual homogeneity. Studies of substrate requirements of ErmC' have shown that a 262-nucleotide RNA fragment within domain V of B. subtilis 23S rRNA can be utilized efficiently as a substrate for methylation at A-2085. Kinetic studies of the monomethylation reaction showed that the apparent Km of this 262-nucleotide RNA oligonucleotide was 26-fold greater than the value determined for full-size and domain V 23S rRNA. In addition, the Vmax for this fragment also rose sevenfold. A model of RNA-ErmC' interaction involving multiple binding sites is proposed from the kinetic data presented.  相似文献   

8.
Macrolide antibiotics like erythromycin can induce the synthesis of a specific 23S rRNA methyltransferase which confers resistance to cells containing the erm gene. Erythromycin inhibits both protein synthesis and the formation of 50S subunits in bacterial cells. We have tested the idea that the 50S precursor particle that accumulates in antibiotic-treated Staphylococcus aureus cells is a substrate for the methyltransferase enzyme. Pulse-chase labeling studies were conducted to examine the rates of ribosomal subunit formation in control and erythromycin-induced cells. Erythromycin binding to 50S subunits was examined under the same conditions. The rate of 50S subunit formation was reduced for up to 30 min after antibiotic addition, and erythromycin binding was substantial at this time. A nuclease protection assay was used to examine the methylation of adenine 2085 in 23S rRNA after induction. A methyl-labeled protected RNA sequence was found to appear in cells 30 min after induction. This protected sequence was found in both 50S subunits and in a subunit precursor particle sedimenting at about 30S in sucrose gradients. 23S rRNA isolated from 50S subunits of cells could be labeled by a ribosome-associated methlytransferase activity, with (3)H-S-adenosylmethionine as a substrate. 50S subunits were not a substrate for the enzyme, but the 30S gradient region from erythromycin-treated cells contained a substrate for this activity. These findings are consistent with a model that suggests that antibiotic inhibition of 50S formation leads to the accumulation of a precursor whose 23S rRNA becomes methylated by the induced enzyme. The methylated rRNA will preclude erythromycin binding; thus, assembly of the particle and translation become insensitive to the inhibitory effects of the drug.  相似文献   

9.
10.
Macrolide antibiotics like erythromycin can induce the synthesis of a specific 23S rRNA methyltransferase which confers resistance to cells containing the erm gene. Erythromycin inhibits both protein synthesis and the formation of 50S subunits in bacterial cells. We have tested the idea that the 50S precursor particle that accumulates in antibiotic-treated Staphylococcus aureus cells is a substrate for the methyltransferase enzyme. Pulse-chase labeling studies were conducted to examine the rates of ribosomal subunit formation in control and erythromycin-induced cells. Erythromycin binding to 50S subunits was examined under the same conditions. The rate of 50S subunit formation was reduced for up to 30 min after antibiotic addition, and erythromycin binding was substantial at this time. A nuclease protection assay was used to examine the methylation of adenine 2085 in 23S rRNA after induction. A methyl-labeled protected RNA sequence was found to appear in cells 30 min after induction. This protected sequence was found in both 50S subunits and in a subunit precursor particle sedimenting at about 30S in sucrose gradients. 23S rRNA isolated from 50S subunits of cells could be labeled by a ribosome-associated methlytransferase activity, with 3H-S-adenosylmethionine as a substrate. 50S subunits were not a substrate for the enzyme, but the 30S gradient region from erythromycin-treated cells contained a substrate for this activity. These findings are consistent with a model that suggests that antibiotic inhibition of 50S formation leads to the accumulation of a precursor whose 23S rRNA becomes methylated by the induced enzyme. The methylated rRNA will preclude erythromycin binding; thus, assembly of the particle and translation become insensitive to the inhibitory effects of the drug. Received: 21 June 2002 / Accepted: 21 August 2002  相似文献   

11.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

12.
Erm methyltransferases mediate the resistance to the macrolide-lincosamide-streptogramin B antibiotics via dimethylation of a specific adenine residue in 23S rRNA. The role of positively charged N-terminal residues of the ErmC' methyltransferase in RNA binding and/or catalysis was determined. Mutational analysis of amino acids K4 and K7 was performed and the mutants were characterized in in vivo and in vitro experiments. The K4 and K7 residues were suggested not to be essential for the enzyme activity but to provide a considerable support for the catalytic step of the reaction, probably by maintaining the optimum conformation of the transition state through interactions with the phosphate backbone of RNA.  相似文献   

13.
14.
15.
A general method for the isolation of mutants of Escherichia coli that are defective in RNA modification is described. The method is based on the fact that RNA with specific undermodifications accumulates under nonpermissive growth conditions and that such a defect can be detected by remodification either in vivo at permissive conditions or in vitro. The method provides a means by which to study mutations affecting essential modification reactions. The usefulness of the method was demonstrated by the isolation of two rRNA and two tRNA methylation defective mutants. Both rRNA mutants accept methyl groups into their 23S rRNA in vitro. Analyses of in vitro methylated 23S rRNA from one of the mutants revealed the presence of several methylated nucleosides, of which 6-methyladenosine was the most abundant (40% of recovered radioactivity). In 23S rRNA from the other mutant, the only product formed in vitro was 5-methylcytidine. The tRNA mutants are characterized in the accompanying paper.  相似文献   

16.
In addition to an RNA-dependent RNA polymerase, purified vesicular stomatitis virus contains a methyltransferase activity which transfers the methyl group from the methyl donor, S-adenosyl-L-methionine, to two positions in the 5'-terminal capped structure of the nascent mRNA's synthesized in vitro as 7mG-(5)'ppp(5')Apm... In the present study it is shown that two distinct methyltransferase activities are discernible in the purified virus. The in vitro concentrations of the methyl donor specify the number and location of the methyl groups transferred to the capped 5'-termini of VSV mRNA's. Limited concentrations of the methyl donor result in a single methylation of the penultimate base in the 2'-hydroxyl position, that is, G(5')ppp(5')Apm..., whereas saturating concentrations of the methyl donor methylate the blocking guanosine residue at the 7-position, resulting in the dimethylated cap, 7mG(5')ppp(5')Apm... Pulse-chase experiments demonstrate that the monomethylated cap structure is the precursor substrate for the dimethylated cap. In this respect, vesicular stomatitis virus system is quite distinct from the vaccinia and reovirus systems. Virus purified from different host cells including hamster, mouse, and human contain both methyltransferase activities. The mRNA's containing monomethylated capped structures are poor templates for protein synthesis in vitro.  相似文献   

17.
Erythromycin is a macrolide antibiotic that inhibits not only mRNA translation but also 50S ribosomal subunit assembly in bacterial cells. An important mechanism of erythromycin resistance is the methylation of 23S rRNA by erm methyl transferase enzymes. A model for 50S ribosomal subunit formation suggests that the precursor particle which accumulates in erythromycin treated cells is the target for methyl transferase activity. Hybridization experiments identified the presence of 23S rRNA in the 50S precursor particle. The protein content of the 50S precursor particle was analyzed by MALDI-TOF mass spectrophotometry. These studies have identified 23 of 36 50S ribosomal proteins in the precursor. Methyltransferase assays demonstrated that the 50S precursor particle was a substrate for ermE methyltransferase. Competition experiments indicated that the enzyme could displace erythromycin from the 50S precursor particle and that the methyltransferase had a higher association constant for the precursor particle compared to that of erythromycin. Inhibition experiments showed that macrolide, lincosamide and streptogramin B compounds bound to the precursor particle with similar affinity and inhibited the ermE methyltransferase activity. These studies shed light on the interaction of ermE methyltransferase and erythromycin in this clinically important pathogen.  相似文献   

18.
Classical acquired resistance to erythromycin in Staphylococcus aureus ("MLS," or macrolide-lincosamide-streptogramin, resistance) was shown by Weisblum and colleagues to be a direct consequence of the conversion of one or more adenosine residues of 23S rRNA, within the subsequence(s) GA3G, to N6-dimethyladenosine (m62A). The methylation reaction is effected by a class of methylase, whose genes are typically plasmid- or transposon-associated, and whose synthesis is inducible by erythromycin. Using a recently obtained clinical MLS isolate of S. aureus, we have further defined the methylation locus as YGG X m62A X AAGAC; and have shown that this subsequence occurs once in the 23S RNA and that it is essentially completely methylated in all copies of 23S RNA that accumulate in induced cultures. Similar findings were obtained with laboratory S. aureus strains containing two well-characterized evolutionary variants (ermB, ermC) of MLS methylase genes. Analyses of a strain of E. coli containing the ermC gene indicated that the specificity of the methylase gene was unchanged, but that its expression was muted. Even after prolonged periods of induction, the strain manifested only partial resistance to erythromycin, and only about one-third of the copies of the MLS subsequence were methylated in such "induced" cultures. Since the E. coli 23S RNA sequence is known in its entirety, localization of the MLS subsequence is in this case unambiguous; as inferred by homology arguments applied earlier to the S. aureus data, the subsequence is in a highly conserved region of 23S RNA considered to contribute to the peptidyl transferase center of the ribosome.  相似文献   

19.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

20.
The erm proteins confer resistance to the MLS (macrolide-lincosamide-streptogramin B) antibiotics in various microorganisms, including pathogens, through dimethylation of a single adenine residue (A2085: Bacillus subtilis coordinate) of the 23S rRNA to reduce the affinity of antibiotics, thereby enabling the cells to escape from the antibiotics' action, and this mechanism is predominantly adopted by microorganisms resistant to MLS antibiotics. ErmSF methyltransferase is one of the four gene products synthesized by Streptomyces fradiae NRRL 2338 to be resistant to its autogenous antibiotic, tylosin. In order to have a convenient source for the purification of milligram amounts, we expressed ErmSF in Escherichia coli using a T7 promoter-driven expression vector system, pET 23b, and the protein was expressed with a carboxy-terminal addition of six histidine residues in order to facilitate purification. Expression at 22 degrees C reduced the formation of insoluble aggregate, inclusion body, and resulted in accumulation of soluble hexahistidine-ErmSF up to 30% of total cell protein after 18 h. Metal-chelation chromatography yielded 126 mg of hexahistidine-ErmSF per liter of culture with a purity slightly greater than 95%. To examine the function of ErmSF in vivo and in vitro, its activity in E. coli (antibiotic susceptibility assay) andin vitro methyltransferase activity using in vitro-produced B. subtilis domain V, 434-, 257-, and 243-nt RNAs were investigated. The ErmSF in E. coli conferred resistance to erythromycin, whereas E. coli harboring an empty vector, pET23b, was susceptible. The purified recombinant protein successfully methylated domain V of 23S rRNA, which is known to contain all of the substrate elements recognized and to be methylated by erm proteins. However, the truncated substrates were methylated with decreased efficiencies. Almost all of domain V was monomethylated with less than 0.2 pM S-[methyl-(3)H]adenosylmethionine concentration. The roles of three structurally divided regions of domain V in recognition and methylation by ErmSF are proposed through kinetic studies using RNA substrates, in which each region is deleted, under the monomethylation condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号