首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The sequential two-step conversion of 4-oxoisophorone (OIP) to 4-hydroxy-2,2,6-trimethylcyclohexanone (4-HTMCH) via diyhdrooxoisophorone (DOIP) was achieved using two kinds of thermophiles, Thermomonospora curvata and Bacillus stearothermophilus. In the first step, 83% OIP was converted to DOIP by T. curvata during 12 h incubation at 50° C. The resulting reaction mixture containing thermophile cells, DOIP (2.5 mg/ml), and OIP (0.5 mg/ml) was used directly in the second step after adjusting to pH 7 and adding glycerol. In the second step, DOIP in the reaction mixture was converted to 4-HTMCH by B. stearothermophilus. The final concentration of 4-HTMCH and DOIP after 24 h of incubation was 2.5 mg/ml and 0.5 mg/ml respectively; OIP was not detected. The total conversion yield of 4-HTMCH from OIP was 83% through the two-step conversion. The two-step conversion by a sequential culture system using T. curvata and B. stearothermophilus was found to be suitable for 4-HTMCH production. Offprint requests to: I. Karube  相似文献   

2.
Summary Long-term continuous optical resolution of 2-(4-chlorophenoxy)propanoic acid was carried out by stereoselective esterification with Celite-adsorbed lipase OF 360 from Candida cylindracea using n-tetradecanol as the second substrate in organic solvent systems. The water content of the Celite-adsorbed lipase affected productivity, 1.0 l water·mg lipase–1 being optimal for preparation of the adsorbed lipase. Water-saturated carbon tetrachloride-isooctane (8:2, v/v) was found to be an excellent organic solvent for the continuous operation. The particle size of Celite had no effect on productivity. Under optimized conditions, the (R)-enantiomer of the acid was continuously esterified with high stereoselectivity in a packed-bed column reactor for 34 days. Furthermore, it was found that treatment of the reactor with acetone made it possible to restore productivity and extend the period of continuous operation for further 29 days. Offprint requests to: A. Tanaka  相似文献   

3.
Summary A non-support bioreactor, a novel column reactor packed with a free non-supported enzyme was constructed by applying the insolubility of the enzyme in organic solvents. Stereoselective esterification of 2-(4-chlorophenoxy)propanoic acid by lipase OF 360 from Candida cylindracea with n-tetradecanol was selected as a model reaction. Non-supported lipase revealed threefold higher activity than Celite-adsorbed lipase by maintaining high stereoselectivity in a batch reaction. In continuous operation, a non-support bioreactor produced the ester with fourfold higher productivity to that of a column reactor packed with Celite-adsorbed lipase (an adsorbed bioreactor). However, the optical purity of the remaining (S)-acid was low even when the conversion ration was kept at approximately 50%. Lipase recovered from the non-support bioreactor after continuous operation retained the original stereoselectivity in a batch reaction. Therefore, semi-continuous operation was conducted by recycling the substrate solution at a high flow rate. The non-support reactor showed high stereoselectivity and ten times the productivity compared with the adsorbed bioreactor. The reason for this high performance is discussed. Offprint requests to: A. Tanaka  相似文献   

4.
Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.  相似文献   

5.
The abnormal expression of long noncoding RNAs (lncRNAs) plays an important role in the regulation of human cancer progression and drug resistance. The lncRNA OPI5-AS1 is a crucial regulator in some cancers; however, its role in cisplatin resistance of osteosarcoma remains unclear. We found that OIP5-AS1 was significantly upregulated in cisplatin-resistant (CR) osteosarcoma cells MG63-CR and SaOS2-CR compared with the corresponding parental cells. OIP5-AS1 silencing suppressed cell growth in vitro and in vivo, and promoted apoptosis of MG63-CR and SaOS2-CR cells, indicating that knockdown of OIP5-AS1 significantly decreased cisplatin resistance in MG63-CR and SaOS2-CR cells. This conclusion was supported by the decreased expression of the drug resistance-related factors multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (P-gp) upon OIP5-AS1 silencing. In addition, OIP5-AS1 downregulation suppressed the PI3K/AKT/mTOR signaling pathway. Importantly, we demonstrated that OIP5-AS1 functions as a competing endogenous RNA of miR-340-5p and regulates the expression of lysophosphatidic acid acyltransferase (LPAATβ), which is a target of miR-340-5p. Moreover, downregulation of miR-340-5p partly reversed the inhibitory effect of OIP5-AS1 knockdown on the PI3K/AKT/mTOR pathway and therefore counteracted cisplatin resistance in MG63-CR and SaOS2-CR cells. In conclusion, OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. Our results contribute to a better understanding of the function and mechanism of OIP5-AS1 in osteosarcoma cisplatin resistance.  相似文献   

6.
Multienzyme reaction systems with simultaneous coenzyme regeneration have been investigated in a continuously operated membrane reactor at bench scale. NAD(H) covalently bound to polyethylene glycol with a molecular weight of 104 [PEG-10,000-NAD(H)] was used as coenzyme. It could be retained in the membrane reactor together with the enzymes. L -leucine dehydrogenase (LEUDH) was used as catalyze for the reductive amination of α-ketoisocaproate (2-oxo-4-methylpentanoic acid) to L -leucine. Format dehydrogenease (FDH) was used for the regeneration of NADH. Kinetic experiments were carried out to obtain data which could be used in a kinetic model in order to predict the performance of an enzyme membrane reactor for the continuous production of L -leucine. The kinetic constants Vmax and Km of enzymes are all in the same range regardless of whether native NAD(H) or PEG-10,000-NAD(H) is used as coenzyme. L -leucine was produced continuously out of α-ketoisocaproate for 48 days; a maximal conversion of 99.7% was reached. The space-time yield was 324 mmol/L day (or 42.5 g/L day).  相似文献   

7.
In this study, (S)-3-hydroxy-3-phenylpropionate was prepared continuously by coupling microbial transformation and membrane separation. The effect of several factors on membrane flux, reactor capacity, and reaction conversion were investigated. A kinetic model of the continuous reduction process was also developed. The appropriate molecular weight cut-off of the ultrafiltration membrane was 30 kDa. The reactor capacity reached a maximum of 0.136/h at a biomass concentration and membrane flux of 86 g/L (dry weight/reaction volume) and 20 mL/h, respectively. The (S)-3-hydroxy-3-phenylpropionate yield was 3.68 mmol/L/day after continuous reduction over seven days. The enantiometric excess of (S)-3-hydroxy-3-phenylpropionate reached above 99.5%. The kinetic constants of continuous reduction were as follows: r m = 3.00 × 10−3 mol/L/h, k cat = 3.49 × 10−4 mol/L/h, k 1 = 3.09 × 10−2 mol/L, and k 2 = 5.00 × 10−7 mol/L. The kinetic model was in good agreement with the experimental data obtained during continuous reduction. Compared with batch reduction, continuous reduction can significantly improve the catalytic efficiency of microbial cells and increase the reactor capacity.  相似文献   

8.
Immune cell products such as interferon (IFN)‐γ and interleukin (IL)‐12 are potent inhibitors of osteoclast formation. We previously characterized the human osteoclast inhibitory peptide‐1 (OIP‐1/hSca), a Ly‐6 gene family member and showed IFN‐γ modulation of OIP‐1 expression in bone marrow cells. Whether, IL‐12 regulates OIP‐1 expression in the bone microenvironment is unclear. Real‐time PCR analysis revealed that IL‐12 treatment significantly enhanced OIP‐1 mRNA expression in human bone marrow mononuclear cells. Because IL‐12 induces IFN‐γ production by T cells, we tested whether IFN‐γ participates in IL‐12 stimulation of OIP‐1 gene expression in these cells. IL‐12 treatment in the presence of IFN‐γ neutralizing antibody significantly increased OIP‐1 mRNA expression, suggesting that IL‐12 directly regulates OIP‐1 gene expression. Interestingly, real‐time PCR analysis demonstrated that IL‐12 induces OIP‐1 expression (3.2‐fold) in CD4+ T cells; however, there was no significant change in CD8+ T cells. Also, IL‐12 (10 ng/ml) treatment of Jurkat cells transfected with OIP‐1 gene (?1 to ?1,988 bp) promoter‐luciferase reporter plasmid demonstrated a 5‐fold and 2.7‐fold increase in OIP‐1 gene promoter activity in the presence and absence of antibody against IFN‐γ, respectively. We showed that STAT‐1,3 inhibitors treatment significantly decreased IL‐12 stimulated OIP‐1 promoter activity. Chromatin immunoprecipitation (ChIP) assay confirmed STAT‐3, but not STAT‐1 binding to the OIP‐1 gene promoter in response to IL‐12 stimulation. These results suggest that IL‐12 stimulates the OIP‐1 gene expression through STAT‐3 activation in CD4+ T cells. J. Cell. Biochem. 107: 104–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Cyclic octapeptides, cyclo(X-Pro)4, where X represents Phe, Leu, or Lys(Z), were synthesized and their conformations investigated. A C2-symmetric conformer containing two cis peptide bonds was found in all of these cyclic octapeptides. The numbers of available conformations due to the cistrans isomerization of Pro peptide bonds depended on the nature of the solvent and X residue: they decreased in the following order: cyclo[Lys(Z)-Pro]4 > cyclo(Leu-Pro)4 > cyclo(Phe-Pro)4 in CDCl3. 13C spin-lattice relaxation times (T1) of these cyclic octapeptides were measured, and the contribution of segmental mobility to T1 was found to vary with the nature of the X residue.  相似文献   

10.
The potential inhibitory effect of acetate on p-toluic acid methanogenic fermentation was studied during the continuous operation at 5.3 days hydraulic retention time of an upflow anaerobic sludge blanket reactor fed with a synthetic waste-water containing 3.67 mm p-toluic acid as sole carbon and energy source. In the absence of acetate, a chemical oxygen demand removal efficiency of 56.8% and an estimated p-toluic acid removal efficiency of 62.8% were achieved. Immediately after the addition of 58.3 mm acetate into the reactor influent, p-toluic acid degradation stopped while most of the acetate was consumed. The inhibition is explained by thermodynamic considerations. It is emphasized that such phenomena could occur during the treatment of waste-waters containing high concentrations of acetate and aromatic compounds that require a syntrophic association to be degraded to acetate and H2. Correspondence to: J. P. Guyot  相似文献   

11.
Continuous asymmetric reduction of 4-oxoisophorone by the thermophilic bacterium Thermomonospora curvata JTS321 was examined using three reactor systems: packed bed, fluidized bed and hollow fiber. T. curvata was immobilized in polyacrylamide-hydrazide gels when used in the packed and fluidized bed reactors. Of the three reactor systems, the highest productivity (964 mg.1-1.h-1) was observed in the fluidized bed reactor. However, many cells grew outside of the gel matrix, causing product contamination. The productivity of the hollow fiber reactor was 504 mg.1-1.h-1; the problem of cell contamination of the product was avoided, as the molecular cut-off of the hollow fibers (400 000) was of an appropriate size to prevent cell leakage to the product stream. We therefore consider that the hollow fiber reactor is most suitable for continuous microbial conversions.  相似文献   

12.

Conversion of organic wastes to syngas is an attractive way to utilize wastes. The produced syngas can be further used to produce a variety of chemicals. In this study, a hollow-fiber membrane biofilm reactor with mix cultures was operated at 55 °C to convert syngas (H2/CO2) into acetate. A high concentration of acetate (42.4 g/L) was reached in batch experiment while a maximum acetate production rate of 10.5 g/L/day was achieved in the continuous-flow mode at hydraulic retention time (HRT) of 1 day. Acetate was the main product in both batch and continuous-flow experiments. n-Butyrate was the other byproduct in the reactor. Acetate accounted for more than 98.5 and 99.1% of total volatile fatty acids in batch and continuous modes, respectively. Illumina Miseq high-throughput sequencing results showed that microorganisms were highly purified and enriched in the reactor. The main genus was Thermoanaerobacterium (66% of relative abundance), which was usually considered as H2 producer in the literature, however, likely played a role as a H2 consumer in this study. This study provides a new method to generate the high producing rate and purity of acetate from syngas.

  相似文献   

13.
In situ product crystallization was investigated for solid product crystals that were obtained during fermentation. The model reaction was the asymmetric reduction of 4-oxoisophorone (OIP) using baker's yeast (S. cerevisiae) as a biocatalyst. The target product was 6R-dihydro-oxoisophorone (DOIP), also known as levodione, a key intermediate in carotenoid synthesis. DOIP was degraded by baker's yeast mainly to (4S,6R)-actinol, an unwanted byproduct in the process. Actinol formation reached up to 12.5% of the initial amount of OIP in the reactor during a batch process. However, better results were obtained when the dissolved DOIP concentration was controlled using an integrated fermentation-crystallization process because: (a) actinol formation was reduced to 4%; and (b) DOIP crystal formation in the reactor was avoided. DOIP productivity was improved by 50% and its selectivity was raised from 87% to 96% relative to the batch process. In the integrated process, most of the product was recovered as pure crystals; this may already minimize, if not eliminate, the need for organic solvents in the final purification steps. An almost sixfold reduction in biocatalyst consumption per kilogram product was achieved, which also can contribute to the minimization of waste streams.  相似文献   

14.
A reactor-scale hydrogen (H2) productionvia the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium,Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic H2 production step. Important parameters investigated included the agitation speed, inlet CO concentration and gas retention time. P4 showed a stable H2 production capability with a maximum activity of 41 mmol H2 g cell−1h−1 during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol H2 L1h−1, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteriaRhodospirillum rubrum andRubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific H2 production activity. This study indicates that P4 has an outstanding potential for a continuous H2 productionvia the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.  相似文献   

15.
The performance of a tapered reactor for the continuous cultivation of bakers' yeast (SCP) from cane molasses has been compared with that of a conventional cylindrical reactor. It is found that the tapered reactor has less non-idealities (bypass and deadspace).Using the experimentally evaluated bypass and deadspace values, a model for predicting conversions of substrate (cane molasses), based on the RTD model proposed by Cholette and Cloutier has been developed. The experimental substrate conversions are found to match the model satisfactorily.List of Symbols D h–1 dilution rate - E() exit age distribution function - K s kg/m3 Monod's saturation constant - -r sa kg/(m3 · h) rate of substrate utilization - S kg/m3 substrate concentration expressed as dextrose equivalent (DE) - S a kg/m3 substrate concentration in active zone - S 0 kg/m3 initial substrate concentration - S/S 0 dimensionless substrate concentration - v a dm3/h volumetric flow through active zone - v b dm3/h volumetric flow through bypass stream - u l dm3/h substrate feed rate - v g dm3/min air-flow rate - V dm3 total working volume of the reactor - V a dm3 volume of active zone in reactor - V d dm3 volume of dead zone in reactor - X kg/m3 biomass concentration Greek Letters fraction of bypass of feed, v b /v l - fraction of deadspace, V d /V - dimensionless residence time - m h–1 maximum specific growth rate - h mean residence time, V/v l   相似文献   

16.
In a related brewing study detailed characteristics of fermentations displaying effective yeastaminopterin interaction were presented.Fermentative yeast types (certain Saccharomyces species and Selenotila intestinalis) proved effective aminopterin reactors whereas oxidative yeasts (certain Candida, Cryptococcus, Pichia, Rhodotorula, Saccharomyces, and Trigonopsis species) proved ineffective reactors. In general effective reactors were polyploids characterized by the lack of film or pellicle formation and ineffective reactors the opposite. In stationary fermentations the Fleischmann 139 strain of S. cerevisiae proved a fair reactor. When aerated it proved an ineffective reactor and aminopterin or products there-of stimulated growth. Conversely aeration enhanced aminopterin activity of effective reactor yeasts.The positive effect of biotin on aminopterin activity and the negative effect of yeast extract, L-asparagine, adenine and thymine is shown and compared and contrasted with earlier reported studies.These findings supported by outside data suggest that oxidative yeasts (and bacteria) can readily elicit enzymes capable of inactivating aminopterin whereas fermentative types are lacking in this capability. Finally that past yeast-aminopterin studies were conducted with oxidative yeast types.Advantages of effective aminopterin reactor yeasts to be published elsewhere include improved ultrastructure using KMnO4–OsO4 fixation, a yeast bioassay procedure for detecting aminopterin in plasma and urine, and cell synchronization.Non-Standard Abbreviation apt aminopterin  相似文献   

17.
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method.  相似文献   

18.
Continuous decolorization of molasses waste water by mycelia of Coriolus versicolor Ps4a was studied using waste water from a baker’s yeast factory, treated by means of methane fermentation and with activated sludge. Optimum decolorization with bare pellet-type mycelia in shaking flasks needed the addition of glucose (0.5%) and peptone (0.05%) and aerobic conditions (1ppm of dissolved oxygen). Continuous decolorization in a bubbling column reactor showed a decolorization yield of approximately 75% in only 20 hr at a dilution rate (D) of 0.03 hr?1 under the optimum conditions.

In order to continue the decolorization for a longer time, mycelia immobilized within Caalginate gel were tested in a bubbling column reactor under the optimum conditions. The immobilized mycelia showed an almost constant decolorization yield (65.7%) during continuous decolorization for 16 days at D = 0.22 hr?1.  相似文献   

19.
The racemic resolution of l-valine and l-serine by fungal aminoacylase has been evaluated by comparing the performance of various reactor configurations including an anion exchange nylon tangential flow membrane reactor, a tubular reactor with aminoacylase adsorbed onto DEAE-Sephadex as support and a continuous stirred tank reactor with enzyme recycling using a flat ultrafiltration module (CSTR/UF). Among the substrates tested, the N-chloroacetyl-d,l-amino acids were the preferred substrates, showing the highest catalytic efficiency (Vm/Km).Optimum reactor operational conditions obtained in discontinuous assays were selected to study the behaviour of the reactors in a continuous mode. DEAE-Sephadex loaded six-fold more enzyme than anion exchange nylon (60 and 10 gE/litre, respectively, related to reactor volume), whereas enzyme concentration within the CSTR/UF reactor was limited only by enzyme solubility.The tangential flow membrane reactor configuration with a 10 g/litre enzyme concentration produced higher productivity values (0·35 kg l-valine/litre per day, and 80% conversion degree) and operational stability (t = 161 days) than the CSTR/UF reactor (0·24 kg l-valine/litre per day, and 80% conversion degree) performing with the same enzyme concentration. The tubular reactor with the enzyme adsorbed onto DEAE-Sephadex (60 g/litre enzyme load) showed higher productivity values (1·9 kg l-valine/litre per day, and 80% conversion degree) and operational stability (t = 70 days) than the CSTR/UF reactor (1·05 kg l-valine/litre per day, and 80% conversion degree). However, the CSTR/UF reactor was the preferred configuration, as it had the highest enzyme load and productivity (1·95 kg l-valine/litre per day of reactor volume, and 80% conversion degree), a half-life of 55 days at 50°C, and the possibility of easy continuous enzyme addition.  相似文献   

20.
4-Hydroxybutyrate (4HB) was produced by Aeromonas hydrophila 4AK4, Escherichia coli S17-1, or Pseudomonas putida KT2442 harboring 1,3-propanediol dehydrogenase gene dhaT and aldehyde dehydrogenase gene aldD from P. putida KT2442 which are capable of transforming 1,4-butanediol (1,4-BD) to 4HB. 4HB containing fermentation broth was used for production of homopolymer poly-4-hydroxybutyrate [P(4HB)] and copolymers poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-4HB)]. Recombinant A. hydrophila 4AK4 harboring plasmid pZL-dhaT-aldD containing dhaT and aldD was the most effective 4HB producer, achieving approximately 4 g/l 4HB from 10 g/l 1,4-BD after 48 h of incubation. The strain produced over 10 g/l 4HB from 20 g/l 1,4-BD after 52 h of cultivation in a 6-L fermenter. Recombinant E. coli S17-1 grown on 4HB containing fermentation broth was found to accumulate 83 wt.% of intracellular P(4HB) in shake flask study. Recombinant Ralstonia eutropha H16 grew to over 6 g/l cell dry weight containing 49 wt.% P(3HB-13%4HB) after 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号