首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statolith microstructure was studied in two abundant planktoniccranchiids, Cranchia scabra (56 specimens, 38–127 mm mantlelength, ML) and Liocranchia reinhardti (34 specimens, 99–205mm ML) sampled in epipelagic waters of the western part of theGulf of Guinea (tropical Atlantic). Growth increments were revealedin ground statoliths of both species. It was possible to distinguishtwo growth zones in statolith microstructure by their colourin reflected light of the microscope: the translucent postnuclearzone and pale white opaque zone. Assuming that growth incrementsin statoliths were produced daily, ages of the largest immatureC.scabra and L.reinhardti were 166 and 146 days, respectively.Both cranchiids are fast-growing squids with growth rates inlength resembling those of juveniles of tropical ommastrephidsand Thysanoteuthis rhombus. Liocranchia reinhardti grows faster:its growth rate in ML is approximately twice that of same-agedC.scabra. The life cycle of both cranchiids consists of twophases. During their epipelagic phase, C.scabra and L.reinhardtifeed and grow rapidly from paralarvae to immature young in theepipelagic waters, attaining 120–130 and 170–200mm ML by ages of 4–5 months, respectively. Then they changetheir life style to a deepwater phase.  相似文献   

2.
Chlorophyll (Chl) a was measured every 10 m from 0 to 150 min the Transition Domain (TD), located between 37 and 45°N,and from 160°E to 160°W, in May and June (Leg 1) andin June and July (Leg 2), 1993–96. Total Chl a standingstocks integrated from 0 to 150 m were mostly within the rangeof 20 and 50 mg m–2. High standing stocks (>50 mg m–2)were generally observed westof 180°, with the exceptionof the sporadic high values at the easternmost station. Thetotal Chl a standing stock tended to be higher in the westernTD (160°E–172°30'E) than in the central (175°E–175°W)and eastern (170°W–160°W) TD on Leg 1, but thesame result was not observed on Leg 2. It was likely that largephytoplankton (2–10 and >10 µm fractions) contributedto the high total Chl a standing stock. We suggest that thehigh total Chl a standing stock on Leg 1, in late spring andearly summer, reflects the contribution of the spring bloomin the subarctic region of the northwestern Pacific Ocean. Thedistribution of total Chl a standing stock on Leg 2 was scarcelyaffected by the spring phytoplankton bloom, suggesting thattotal Chl a standing stock is basically nearly uniform in theTD in spring and summer. Moreover, year-to-year variation inthe total Chl a standing stock was observed in the western TDon Leg 1, suggesting that phytoplankton productivity and/orthe timing of the main period of the bloom exhibits interannualvariations.  相似文献   

3.
KWESIGA  F.; GRACE  J. 《Annals of botany》1986,57(3):283-290
The West African species Khaya senegalensis and Terminalia ivorensiswere grown in a controlled environment, varying the photon fluxdensity in the range 18–610 µmol m–2 s–1and the red/far-red ratio over an appropriate range to simulatethe shade of a tree canopy versus unattenuated daylight. Theshade tolerant seedlings of Khaya were relatively insensitiveto the red/far-red ratio. The light demanding Terminalia wasconsiderably affected: when the ratio was low the specific leafarea was increased and the leaves produced were very much largerin area. Thus, the Leaf Area Ratio was enhanced and the plantsdisplayed an increase in Relative Growth Rate. Khaya, Terminalia, tropical trees, shade, red/far-red ratio  相似文献   

4.
Analysis of the Promoter of the Auxin-Inducible Gene, parC, of Tobacco   总被引:2,自引:0,他引:2  
The auxin-responsive region (AuxRR) in the promoter of the parCgene was analyzed in transgenic tobacco plants in which the5' flanking region of the parC promoter was placed upstreamof the gene for rß-glucuronidase (GUS). The AuxRRwas located between nucleotides (nt) –226 and –54.Detailed dissection of this segment revealed that the presenceof the non-contiguous sequences from nt –226 to –151and from nt –84 to –54 was required for the expressionof the auxin responsiveness of the parC promoter. The sequencefrom nt –226 to –151 was found to contain a sequencewhich resembles the as-1 element in the 35S promoter of cauliflowermosaic virus (CaMV). Although it has been reported that theas-1 element is involved in auxin responsiveness [Liu and Lam(1994) J. Biol. Chem. 269: 668], we showed that introductionof a point mutation into the as-1-like sequence completely eliminatedauxin responsiveness, a result that suggests that the sequenceis indispensable for auxin responsiveness. However, the presenceof the as-1-like sequence alone was not sufficient for auxinresponsiveness, since the segment (nt –226 to –84)that included the as-1-like sequence failed to confer auxinresponsiveness on the core promoter. It is possible that thetwo separately located sequences play specific roles in interactionswith trans-factors that are required for the expression of theauxin responsiveness of the parC promoter. (Received March 11, 1996; Accepted July 9, 1996)  相似文献   

5.
Fifty-nine specimens of the tropical epipelagic eno-ploteuthidEnoplotcuthis leptura were collected in the central-east Atlanticbetween 1986–1988. Statoliths were extracted from allspecimens (mantle length (ML) 4.1–92 mm) and processedunder the statolith ageing technique. The characteristic featureof statolith morphology in E. leptura is a sculpture of therostrum, which is covered by numerous tiny spines and knobs.In the ground statolith it was possible to distinguish fourmain growth zones consisting of narrow growth increments likethose in other squids studied. Allometric growth of statolithsversus ML is negative. E. leptura is a short-lived squid witha half-year life span. Growth rates of E. leptura are high atjuvenile stage (instantaneous rate of growth (G) of body weight(BW) 0.04–0.06). An early maturation of males (at age45–60 days) and females (at 80–90 days) causes asharp decrease of somatic growth of E. leptura, and mature squidhave low growth rates (G of BW - 0.OO3-O.0O5). Spawning takesplace between January and September with two peaks: in Januaryand in June-July. (Received 22 November 1992; accepted 15 February 1993)  相似文献   

6.
The growth of the cultivar Golden Princess Anne (G.P.A.) wasstudied in controlled announcement cabinets in a range of lightconditions (125–375 J cm–2 8-h day–1) andcarbon dioxide concentrations (325–1500 ppm) in all combinationsPlants obtained in January and grown from January to April showedgreater final total dry weight and flower dry weight at bothhigher light intensity and higher carbon dioxide concentrationwith a strong positive interaction between them, whereas plantsobtained in September and grown from September to December didnot respond much to increased carbon dioxide concentration andthere was only a small positive interaction with light intensity.The plants grown from January to April had larger final leafareas, larger mean leaf-area ratios due mainly to larger specificleaf areas, and higher mean specific leaf-water contents comparedwith September–December plants. Despite the differencein specific leaf-water content, leaf area was almost the samelinear function of absolute leaf-water content at both timesof year. The other vegetative parts also had higher specificwater contents throughout the January–April experimentand the lateral branches were longer when compared with thecorresponding values for September–December Flower developmentwas slightly faster in September–December and the plantsbore on average one flowering branch less compared with January–Aprilplants. Plants in the lower light and carbon dioxide conditions hadlower unit leaf rates, but for plants of similar total dry weightthe effects of this on dry-matter increment were partially offsetby larger leaf areas at both times of year. The January–Aprilplants had greater leaf areas than September–Decemberplants of similar unit leaf rate and total dry weight. The cultivar Bright Golden Anne (B.G.A ) showed effects whichwere in the same direction but smaller in magnitude, tendingto diminish the differences between the times of year For example,the positive interaction in total plant dry weight was smallerin January–April compared with G P A , but larger in September–December.Leaf area, leaf-area ratio, specific leaf area, specific watercontent of leaf, stem, and root, and lateral branch length,were all larger for B G A in corresponding treatment-combinationsin two January–April experiments than in a September–Decemberone, although the difference between the times of year was smallerthan for G.P.A except for leaf area which was relatively butnot absolutely smaller Dry-matter increment and leaf area showedan inverse relationship for plants of the same total dry weight,as in G P A. In January–April B G.A plants of similarunit leaf rate and total dry weight also had greater leaf areasthan in September–December but the differences were notso large as for G.P.A Total dry-matter production was slightlygreater for B.G.A. in January–April and considerably greaterin September–December compared with G P A , and at bothtimes of year B.G.A. was more leafy, with higher specific watercontents for the vegetative parts. It was not possible to determine the cause of the differencesin growth obtained at the two times of year. It could have arisenbefore the cuttings were removed from the stock plants, duringpropagation, or during the course of the experiments in thegrowth cabinets.  相似文献   

7.
Seasonal abundance as total biomass and specific densities ofthe main herbivorous zooplankton (>60 µm) in hypertrophicHartbeespoort Dam from 1981 to 1983 are described. After springzooplankton biomass maxima each year there followed a mid-summerdecline in the Daphnia population and a shift to a smaller bodiedcladoceran community dominated by Ceriodaphnia concomitant witha change from largely edible phytoplankton species to abundantcolonial Microcystis. In situ community grazing rates were measuredthroughout 1983 using a 14C-labelled unicellular alga. Integratedcommunity grazing rates measured in the aerobic water columnwere highest in December (260.2%/day) when Daphnia was abundantand the edible component of the phytoplankton was diminishing.Lowest integrated community grazing rates occurred in January–February(19.8–35.3%/day) and July (28.3%/day) when the phytoplanktonwas composed almost entirely of Microcysris, and Ceriodaphniadominated the zooplankton community whilst food availabilitywas low. Feeding in Ceriodaphnia was not hindered by abundantlarge Microcysris colonies; total biomass specific grazing ratewas high when Ceriodaphnia dominated and low when Daphnia dominatedthe zoo-plankton community. Results indicate that in hypertrophicconditions it is unlikely that large filter-feeders such asDaphnia are able to retard or limit the development of Cyanophyceaeblooms by high grazing pressure.  相似文献   

8.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

9.
A new high-pressure flowmeter(HPFM)is described which is capableof rapid water-flow measurements. The HPFM permits dynamic determinationof hydraulic conductance of roots, Kr, and can be used in tehlaboratory or field. The base of a root is connected to theHPFM and water is perfused into the root system opposite tothe normal direction of flow during trnaspiration. The perfusionpressure is changed at a constant rate of 3–7 kPa s–1while measuring the flow into the root every 2–4 s. Theslope of the plot of flow versus applied pressure is Kr. This paper describes the HPFM, presnents the theory of dynamicflow measurements, discusses sources of error, presnets evidencethat dynamic measurements of Kr in Ficus maclellandi (and sixother tropical species from Panama) yield the correct result,and demonstrates the use of the method under field conditionsin Panama on Cecropia obtusifolia and Palicourea guianensis. Key words: High-pressure flowmeter, root and shoot hydraulic conductance, Ficus maclellandi, Cecropia obtusifolia, Palicourea guianensis  相似文献   

10.
CHOINSKI  J. S  JR; TUOHY  J M 《Annals of botany》1991,68(3):227-233
The germination responses of seeds from the African tree speciesColophospermum mopane, Combretum apiculatum, Acacia tortilisand Acacia karroo under varying regimes of temperature and waterstress (induced by incubation in PEG 8000) are reported Withthe exception of Combretum (at –0.14 and –0.29 MPa)and Colophospermum (at –0.29 MPa), incubation in PEG decreasedthe maximum achieved germination percentage (90–100% forall species), but did not extend the germination lag (exceptin Combretum) or affect the time required to reach maximum germinationCombretum and Colophospermum were found to germinate under thewidest range of temperatures and water potentials, for example,as strongly negative as –1.0 MPa at 20 and 30 °C,respectively These seeds also showed greater or equivalent hypocotylelongation in PEG solutions creating potentials of –0.14,–0.29 or –0.51 MPa when compared with seeds germinatedin water, indicating an additional stress adaptation Acaciaspecies showed progressive reduction in germination rates andradicle elongation in response to decreasing water potentialExperiments giving pre-imbibition treatments in water priorto transfer to PEG solutions showed that both Acacia speciesgerminated at approximately 90% if given such pre-treatmentand less than 10% if transferred directly to PEG It is concludedthat the most stress-adapted species studied are Colophospermummopane and Combretum apiculatum, a finding generally correlatedwith the growth habit of these trees Colophospermum mopane, Combretum apiculatum, Acacia tortilis, Acacia karroo, germination, water stress, Zimbabwe  相似文献   

11.
We determined the productivity (µg C µg–1Chi a h–1) of size-fractionated phytoplankton in the northernNorth Pacific and the Bering Sea in summer and winter. Picoplankton(<2 µm) were more productive than larger sized phytoplankton(2–10 and 10–200 µm) in the subtropical region,where the in situ temperature was >10°C; whereas picoplanktonin the subarctic region were similar in productivity or lessproductive than larger sized plankton, where the in situ temperaturewas <10°C. The result from the subtropical region inthis study agrees with previous results from tropical and subtropical waters, which indicate that phytoplankton productivitytends to decrease with increasing cell size. The result fromthe subarctic region, however, differs from previous results.We observed a positive linear regression for in situ temperatureand picoplankton productivity, but this trend was not seen inthe larger sized phytoplankton. The results show that the productivityof picoplankton is markedly influenced by in situ temperaturecompared with that of larger sized plankton. Low tem peratureappears to account largely for the observation that the productivityof picoplankton is not significantly higher than that of largersized phytoplankton in the subarctic region.  相似文献   

12.
Mohamed, H. A., Clark, J. A. and Ong, C. K. 1988. Genotypicdifferences in the temperature responses of tropical crops.I. Germination characteristics of groundnut (Arachis hypogaeaL.) and pearl millet (Pennisetum typhoides S. & H.).—J.exp. Bot. 39: 1121–1128. The germination at constant temperature of several genotypesof groundnut and pearl millet was investigated between 0?C and50?C on a thermal gradient plate. Large differences in bothgermination rate and percentage germination were observed inboth species. Base temperatures vary from 8–11.5?C and 8–13.5?Cin groundnut and millet, respectively and optimum temperaturesfrom about 29–36.5?C in both. Maximum temperatures forgermination ranged from 41–47?C. The results are discussedin terms of adaptation to high soil temperature and crop establishmentin the semi-arid tropics. Key words: Temperature, germination, millet, groundnut  相似文献   

13.
We previously showed that plasma membrane Ca2+-ATPase (PMCA) activity accounted for 25–30% of relaxation in bladder smooth muscle (8). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca2+ ([Ca2+]i) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1+/–, Pmca4+/–, Pmca4–/–, and Pmca1+/–Pmca4–/– mice. There were no differences in basal [Ca2+]i values between bladder preparations. KCl (80 mM) elicited both larger forces (150–190%) and increases in [Ca2+]i (130–180%) in smooth muscle from Pmca1+/– and Pmca1+/–Pmca4–/– bladders than those in WT or Pmca4–/–. The responses to carbachol (CCh: 10 µM) were also greater in Pmca1+/– (120–150%) than in WT bladders. In contrast, the responses in Pmca4–/– and Pmca1+/–Pmca4–/– bladders to CCh were significantly smaller (40–50%) than WT. The rise in half-times of force and [Ca2+]i increases in response to KCl and CCh, and the concomitant half-times of their decrease upon washout of agonist were prolonged in Pmca4–/– (130–190%) and Pmca1+/–Pmca4–/– (120–250%) bladders, but not in Pmca1+/– bladders with respect to WT. Our evidence indicates distinct isoform functions with the PMCA1 isoform involved in overall Ca2+ clearance, while PMCA4 is essential for the [Ca2+]i increase and contractile response to the CCh receptor-mediated signal transduction pathway. PMCA; bladder smooth muscle; gene-altered mice  相似文献   

14.
The population dynamics of the scyphomedusa Aurelia aurita inSouthampton Water is characterized. Strobilation, indicatedby the presence of 1 mm ephyrae, occurred from the end of Januaryto the middle of March. Maximum abundances of up to 8.71 m–3occurred soon after ephyrae release, after which numbers declinedsteadily until the end of June, when the population was absentfrom Southampton Water. The residence time of 3–4 monthsis somewhat less than that reported in many other areas, includingKiel Bight and Gullmarfjord. The carbon biomass of A.auritaaccounted for 92–97% of the predominant gelatinous biomass(A.aurita, Pleurobrachia pileus and Phialidium hemisphericum)in the upper estuary, and this reached a maximum of 30.2 mgC m–3 in May 1990 and 27.6 mg C m–3 in June 1991.Coincident with increased water temperature and mesozooplanktonabundance during May, growth rates increased from 0.02–0.30mm day–1 to a peak of 4.8 mm day–1, with a maximumbell diameter of 120–140 mm reached in late May/earlyJune. Size to maturity was variable, although the smallest medusaobserved to be ‘ripe’, i.e. containing dividingeggs and planula larvae in the brood sacs on the oral arms,were 64–71 mm. Aurelia aurita is believed to be endemicto Southampton Water, but because of the double high water inthe area, short flushing rates of between 4.5 and 20 days maybe responsible for such short residence times of Aurelia medusae.The effects of strong NE winds were considered as factors governingthe distribution of medusae in years of atypical temporal abundance.  相似文献   

15.
Some Implications of Climatic Change for Agriculture in Europe   总被引:2,自引:0,他引:2  
Initial results are reported of a study to evaluate the broad-scalesensitivity of agriculture in Europe to climatic change. Thestudy relates an agroclimatic index, effective temperature sum(ETS), to the cultivable limits of grain maize. A computer mappingsystem for the European region is adopted to map ETS on thebasis both of present-day and of possible future mean temperatures.In this way, changes in climate can be depicted as geographicalshifts of the limit of potential grain maize cultivation. The results indicate that a mean annual temperature increaseof only 1 °C (within the present-day range of inter-annualvariability) would open up large areas in southern England,the Low Countries, eastern Denmark, northern Germany, and northernPoland to potential grain maize cultivation. An increase of4°C would move the limit into central Fennoscandia and northernRussia. The latter changes are similar to those projected bygeneral circulation models (GCMs) for an equivalent doublingof atmospheric carbon dioxide, and represent rates of northwardshift of approximately 200–350 km/°C in western Europeand 250–400 km/°C in eastern Europe. Results using information from GCM transient-response experimentsindicate that such shifts could occur as soon as the 2050s ifthe current exponential growth in emission rates of greenhousegases were to continue unabated. The rate of shift of the grainmaize limit implied for this high (and improbable) emissionsscenario is in the order of 150–200 km per decade overthe next 70 years, slower than this during the next few decades,but faster thereafter. It is probable that the actual rate willbe lower than this, but even values of half those calculated,if sustained, would still represent rates of shift in agroclimaticpotential that are unprecedented in the historical record.  相似文献   

16.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

17.
18.
Two planktonic cyclopoid copepods (Tropocyclops prasinus andMesocyclops longisetus) were raised in the laboratory to obtainlife history information (duration of embryonic and post-embryonicdevelopment, reproductive performance, longevity, and stage-specificlength and weight values). Animals were maintained at 20 and25°C, and fed ad libitum. Development times were temperaturedependent when food was not limiting, with shorter periods ofembryonic and post-embryonic development and decreased longevityat 25°C. Laboratory data on the duration of developmentand biomass, together with population dynamics data obtainedin the field, were used to estimate summer and winter biomassand production of these species in a shallow reservoir, LagoaDourada, Brazil. The maximum production rate of T. prasinus,attained during summer, was 2.8 mg dry weight (DW) m–3day–1 and the highest daily production:biomass (P:B) ratiowas 0.29, whereas for M. longisetus the maximum production ratewas 1.4 mg DW m–3 day–1 and the highest daily P:Bratio was 0.39, in the winter. Over short time intervals (everyother day), there was great variability of the species productionrates. Species production rates were low compared to valuesreported in the literature for the same or other species ofequivalent sized copepods from both tropical and subtropicalregions.  相似文献   

19.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

20.
Carbon content of some common tropical Andaman Sea copepods   总被引:3,自引:0,他引:3  
Individual carbon contents of eight common copepod speciesfrom the Andaman Sea were determined. Length–carbon regressionsare presented for four calanoids (Acrocalanus gibber, Centropagesfurcatus, Temora discaudata and Euchaeta spp.), two cyclopoids(Oncaea spp. and Corycaeus spp.) and two harpacticoids (Macrosetellagracilis and Microsetella spp.). The copepod specimens wereobtained from different localities and times of the year during1996–1997. The regression coefficients are good in calanoidand cyclopoid copepods, but poor in the harpacticoids. The slopevalues range from 2.3 to 3.8 in the calanoids to 1.2 and 1.6in the harpacticoids, while the cyclopoids have slope valuesof 2.0 and 2.9. The equations derived from this study are expectedto be general characteristics, which are applicable for thecalculation of copepod biomass and production in tropical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号