首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

3.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

4.
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.  相似文献   

5.
6.
7.
8.
Oxidative-stress resistance in Staphylococcus aureus is linked to metal ion homeostasis via several interacting regulators. In particular, PerR controls the expression of a regulon of genes, many of which encode antioxidants. Two PerR regulon members, ahpC (alkylhydroperoxide reductase) and katA (catalase), show compensatory regulation, with independent and linked functions. An ahpC mutation leads to increased H2O2 resistance due to greater katA expression via relief of PerR repression. Moreover, AhpC provides residual catalase activity present in a katA mutant. Mutation of both katA and ahpC leads to a severe growth defect under aerobic conditions in defined media (attributable to lack of catalase activity). This results in the inability to scavenge exogenous or endogenously produced H2O2, resulting in accumulation of H2O2 in the medium. This leads to DNA damage, the likely cause of the growth defect. Surprisingly, the katA ahpC mutant is not attenuated in two independent models of infection, which implies reduced oxygen availability during infection. In contrast, both AhpC and KatA are required for environmental persistence (desiccation) and nasal colonization. Thus, oxidative-stress resistance is an important factor in the ability of S. aureus to persist in the hospital environment and so contribute to the spread of human disease.  相似文献   

9.
10.
In Agrobacterium tumefaciens, the balance between acquiring enough iron and avoiding iron-induced toxicity is regulated in part by Fur (ferric uptake regulator). A fur mutant was constructed to address the physiological role of the regulator. Atypically, the mutant did not show alterations in the levels of siderophore biosynthesis and the expression of iron transport genes. However, the fur mutant was more sensitive than the wild type to an iron chelator, 2,2'-dipyridyl, and was also more resistant to an iron-activated antibiotic, streptonigrin, suggesting that Fur has a role in regulating iron concentrations. A. tumefaciens sitA, the periplasmic binding protein of a putative ABC-type iron and manganese transport system (sitABCD), was strongly repressed by Mn(2+) and, to a lesser extent, by Fe(2+), and this regulation was Fur dependent. Moreover, the fur mutant was more sensitive to manganese than the wild type. This was consistent with the fact that the fur mutant showed constitutive up-expression of the manganese uptake sit operon. Fur(At) showed a regulatory role under iron-limiting conditions. Furthermore, Fur has a role in determining oxidative resistance levels. The fur mutant was hypersensitive to hydrogen peroxide and had reduced catalase activity. The virulence assay showed that the fur mutant had a reduced ability to cause tumors on tobacco leaves compared to wild-type NTL4.  相似文献   

11.
In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.  相似文献   

12.
13.
14.
PerR是一类存在于多种细菌中的转录因子。研究证实PerR调控的靶基因包括过氧化氢酶katA、DNA结合蛋白mrgA、铁转运调控子fur、血红素合成基因簇hemAXCDBL以及自身perR等。PerR参与的调控作用在细菌的抗氧化作用、胞内的铁离子动态平衡、以及致病菌致病作用中具有重要的意义。本综述主要从PerR调控的靶基因、参与的生理代谢作用以及PerR转录调控的分子机制等方面进行介绍,以期对我们深入了解细菌的抗逆作用机制提供参考。  相似文献   

15.
16.
17.
18.
19.
Shigella flexneri requires iron for survival, and the genes for iron uptake and homeostasis are regulated by the Fur protein. Microarrays were used to identify genes regulated by Fur and to study the physiological effects of iron availability in S. flexneri. These assays showed that the expression of genes involved in iron acquisition and acid response was induced by low-iron availability and by inactivation of fur. A fur null mutant was acid sensitive in media at pH 2.5, and acid sensitivity was also observed in the wild-type strain grown under iron-limiting conditions. Acid resistance of the fur mutant in minimal medium was restored by addition of glutamate during acid challenge, indicating that the glutamate-dependent acid resistance system was not defective. Inactivation of ryhB, a small regulatory RNA whose expression is repressed by Fur, restored acid resistance in the fur mutant, while overexpressing ryhB increased acid sensitivity in the wild-type strain. RyhB-regulated genes were identified by microarray analysis. The expression of one of the RyhB-repressed genes, ydeP, which encodes a putative oxidoreductase, suppressed acid sensitivity in the fur mutant. Furthermore, an S. flexneri ydeP mutant was defective for both glutamate-independent and glutamate-dependent acid resistance. The repression of ydeP by RyhB may be indirect, as real time polymerase chain reaction (PCR) experiments indicated that RyhB negatively regulates evgA, which encodes an activator of ydeP. These results demonstrate that the acid sensitivity defect of the S. flexneri fur mutant is due to repression of ydeP by RyhB, most likely via repression of evgA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号