首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
4.
Plasmid pJM1 from an invasive strain of Vibrio anguillarum encodes an iron uptake system which mediates the biosynthesis of a siderophore and a membrane receptor for the iron-siderophore complex. This system has been associated with the ability of V. anguillarum to cause hemorrhagic septicemic disease in marine fish. Recombinant derivatives containing essential regions of the pJM1-mediated iron uptake system cloned into cosmid vector pVK102 were introduced into low-virulence iron uptake-deficient V. anguillarum strains by using a trifactor mating procedure with helper plasmid pRK2013. Three recombinant clones, pJHC-T7, pJHC-T11, and pJHC-T2612, possessed genetic determinants for receptor activity. Production of receptor activity was correlated in all three cases with the presence of OM2, an 86-kilodalton outer membrane protein which was induced under iron-limiting conditions. Two of the clones, pJHC-T7 and pJHC-T2612, also coded for the production of siderophore activity, although at a much lower level than the wild type. Strains harboring either of these two clones were still unable to grow under iron-limiting conditions. This inability was overcome only when other indigenous pJM1 derivatives were present in the cells in addition to the recombinant cosmids. This restoration of high siderophore production and ability to grow under iron-limiting conditions was achieved even when the indigenous plasmids possessed lesions in genes involved in siderophore activity or in both siderophore and receptor production. Thus, another function mediated by plasmid pJM1, possibly a transacting factor, may play a role in the regulation of siderophore production. Results of experimental infections demonstrated that restoration of the ability to grow under conditions of iron limitations by introduction of an recombinant clone into one of the low-virulence V. anguillarum strains was correlated with an increase in bacterial pathogenicity.  相似文献   

5.
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.  相似文献   

6.
7.
Agrobacterium tumefaciens harboring a Ti plasmid causes crown gall disease in dicot plants by transferring its T-DNA into plant chromosomes. Iron acquisition plays an important role for pathogenicity in animal pathogens and several phytopathogens and for growth in the rhizosphere and on plant surfaces. Under iron-limiting condition, bacteria produce various iron-chelating agents called siderophores. Agrobacterium strains have the diversity in producing siderophores and a certain strain produces a typical catechol-type siderophore, called agrobactin, although its biosynthesis genes have not been analyzed yet. Here we describe the cloning and characterization of a functional gene cluster involved in ferric iron uptake in A. tumefaciens strain MAFF301001. Four complete open reading frames (ORFs) were found in 5-kb region of a genomic library clone 1A3. We named these genes agb, after agrobactin. agbC, agbE, agbB and agbA genes were identified in this order, and narrow intergenic spaces suggested that these genes constitute an operon. Predicted agb gene products and their phylogenetic analysis showed sequence similarity with enzymes which are involved in ferric iron uptake in other bacteria. Southern hybridization analysis clearly indicated the location of agb genes on the linear chromosome in strain MAFF301001 but the complete lack in another A. tumefaciens strain C58. Mutation analysis of agbB revealed that it is essential for growth and production of catechol compounds in iron-limiting medium.  相似文献   

8.
9.
10.
11.
12.
13.
We determined that LVS and Schu S4 strains of the human pathogen Francisella tularensis express a siderophore when grown under iron-limiting conditions. We purified this siderophore by conventional column chromatography and high-pressure liquid chromatography and used mass spectrometric analysis to demonstrate that it is structurally similar to the polycarboxylate siderophore rhizoferrin. The siderophore promoted the growth of LVS and Schu S4 strains in iron-limiting media. We identified a potential siderophore biosynthetic gene cluster encoded by fslABCD in the F. tularensis genome. The first gene in the cluster, fslA, encodes a member of the superfamily of nonribosomal peptide synthetase-independent siderophore synthetases (NIS synthetases) characterized by the aerobactin synthetases IucA and IucC. We determined that fslA is transcribed as part of an operon with downstream gene fslB and that the expression of the locus is induced by iron starvation. A targeted in-frame nonpolar deletion of fslA in LVS resulted in the loss of siderophore expression and in a reduced ability of F. tularensis to grow under conditions of iron limitation. Siderophore activity and the ability to grow under iron limitation could be regained by introducing the fslA(+) gene on a complementing plasmid. Our results suggest that the fslA-dependent siderophore is important for survival of F. tularensis in an iron-deficient environment.  相似文献   

14.
Cell density-dependent gene expression in Pseudomonas aeruginosa is controlled, in part, by the quorum-sensing regulator LasR. lasR null mutants exhibited a reproducible 2-fold decrease in production of the catecholate-hydroxamate siderophore pyoverdine during grown under iron-limiting conditions. Similarly, lasI mutants defective in the biosynthesis of the autoinducer PAI-1 also exhibited a 2-fold decrease in pyoverdine production which could be largely restored upon addition of exogenous PAI-1. lasR mutants were not altered with respect to expression of the pvdD gene involved in the synthesis of the peptide portion of pyoverdine, indicating that some other pyoverdine biosynthetic gene(s) were affected by the LasRI status of the cell. This represents the first report of quorum-sensing regulation of siderophore production in bacteria and highlights the fact that cell density, while not an essential signal for pyoverdine expression, does enhance production of this siderophore.  相似文献   

15.
16.
17.
The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together with the probable overall structure of the siderophore, i.e., a small peptide chain attached to a fluorescing group, suggest a biosynthetic pathway in which the synthesis of the fluorescing group is preceded by the synthesis of the peptide part. A gene colony bank of P. putida WCS358 was constructed with the broad-host-range cosmid vector pLAFR1. This genomic library, established in Escherichia coli, was mobilized into the 28 individual mutants, screening for transconjugants restored in fluorescence or growth under iron-limiting conditions or both. A total of 13 cosmids were found to complement 13 distinct mutants. The complementation analysis revealed that at least five gene clusters, with a minimum of seven genes, are needed for siderophore biosynthesis. Some of these genes seem to be arranged in an operon-like structure.  相似文献   

18.
Plasmid-mediated iron uptake and virulence in Vibrio anguillarum   总被引:4,自引:0,他引:4  
The plasmid pJM1 of Vibrio anguillarum harbors genes encoding proteins that enable the bacterial cell to survive under iron limiting conditions. A subset of these proteins are involved in the biosynthesis of the siderophore anguibactin and in the internalization of the ferric-siderophore into the cell cytosol. We have identified several genes encoding non-ribosomal peptide synthetases that catalyze the synthesis of anguibactin, these genes are: angB/G, angM, angN, angR, and angT. In addition, the genes fatA, fatB, fatC, and fatD are involved in the transport of ferric-anguibactin complexes. These transport genes, together with the biosynthesis genes angR and angT, are included in the iron transport biosynthesis operon (ITBO). Both the biosynthesis and the transport genes are under tight positive as well as negative control. We have identified four regulators; two of them, a chromosomally encoded Fur and a plasmid-mediated antisense RNA, RNAbeta, act in a negative fashion, while positive regulation is facilitated by AngR and TAFr. We also have evidence that the siderophore itself plays a positive role in the regulatory mechanism of the expression of both transport and biosynthesis genes.  相似文献   

19.
20.
We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号