首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C‐terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I‐CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75‐fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90‐fold.  相似文献   

2.
Strategies for prokaryotic expression of eukaryotic membrane proteins   总被引:4,自引:0,他引:4  
High-level heterologous expression of integral membrane proteins at full-length is a useful tool for their structural and functional characterization. Here, systems that have previously been used for efficient bacterial expression of eukaryotic membrane proteins are reviewed and novel vectors consisting of a modular fusion moiety based on nuclease A from Staphylococcus aureus are presented.  相似文献   

3.

Background

During standard gene cloning, the recombinant protein appearing in bacteria as the result of expression leakage very often inhibits cell proliferation leading to blocking of the cloning procedure. Although different approaches can reduce transgene basal expression, the recombinant proteins, which even in trace amounts inhibit bacterial growth, can completely prevent the cloning process.

Methods

Working to solve the problem of DNase II-like cDNA cloning, we developed a novel cloning approach. The method is based on separate cloning of the 5′ and 3′ fragments of target cDNA into a vector in such a way that the short Multiple Cloning Site insertion remaining between both fragments changes the reading frame and prevents translation of mRNA arising as a result of promoter leakage. Subsequently, to get the vector with full, uninterrupted Open Reading Frame, the Multiple Cloning Site insertion is removed by in vitro restriction/ligation reactions, utilizing the unique restriction site present in native cDNA.

Results

Using this designed method, we cloned a coding sequence of AcDNase II that is extremely toxic for bacteria cells. Then, we demonstrated the usefulness of the construct prepared in this way for overexpression of AcDNase II in eukaryotic cells.

Conclusions

The designed method allows cloning of toxic protein coding sequences that cannot be cloned by standard methods.

General significance

Cloning of cDNAs encoding toxic proteins is still a troublesome problem that hinders the progress of numerous studies. The method described here is a convenient solution to cloning problems that are common in research on toxic proteins.  相似文献   

4.
Membrane proteins control a large number of vital biological processes and are often medically important—not least as drug targets. However, membrane proteins are generally more difficult to work with than their globular counterparts, and as a consequence comparatively few high‐resolution structures are available. In any membrane protein structure project, a lot of effort is usually spent on obtaining a pure and stable protein preparation. The process commonly involves the expression of several constructs and homologs, followed by extraction in various detergents. This is normally a time‐consuming and highly iterative process since only one or a few conditions can be tested at a time. In this article, we describe a rapid screening protocol in a 96‐well format that largely mimics standard membrane protein purification procedures, but eliminates the ultracentrifugation and membrane preparation steps. Moreover, we show that the results are robustly translatable to large‐scale production of detergent‐solubilized protein for structural studies. We have applied this protocol to 60 proteins from an E. coli membrane protein library, in order to find the optimal expression, solubilization and purification conditions for each protein. With guidance from the obtained screening data, we have also performed successful large‐scale purifications of several of the proteins. The protocol provides a rapid, low cost solution to one of the major bottlenecks in structural biology, making membrane protein structures attainable even for the small laboratory.  相似文献   

5.
Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues.  相似文献   

6.
Efflux proteins are membrane proteins, which are involved in the transportation of multidrugs. The annotation of efflux proteins in genomic sequences would aid to understand the function. Although the percentage of membrane proteins in genomes is estimated to be 25–30%, there is no information about the content of efflux proteins. For annotating such class of proteins it is necessary to develop a reliable method to identify efflux proteins from amino acid sequence information. In this work, we have developed a method based on radial basis function networks using position specific scoring matrices (PSSM) and amino acid properties. We noticed that the C‐terminal domain of efflux proteins contain vital information for discrimination. Our method showed an accuracy of 78 and 92% in discriminating efflux proteins from transporters and membrane proteins, respectively using fivefold cross‐validation. We utilized our method for annotating the genomes E. coli and P. aeruginosa and it predicted 8.7 and 9.2% of proteins as efflux proteins in these genomes, respectively. The predicted efflux proteins have been compared with available experimental data and we observed a very good agreement between them. Further, we developed a web server for classifying efflux proteins and it is freely available at http://rbf.bioinfo.tw/~sachen/EFFLUXpredict/Efflux‐RBF.php . We suggest that our method could be an effective tool for annotating efflux proteins in genomic sequences.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Abstract

Constituting functional interactions between proteins and lipid membranes is one of the essential features of cellular membranes. The major challenge of quantitatively studying these interactions in living cells is the multitude of involved components that are difficult, if not impossible, to simultaneously control. Therefore, there is great need for simplified but still sufficiently detailed model systems to investigate the key constituents of biological processes. To specifically focus on interactions between membrane proteins and lipids, several membrane models have been introduced which recapitulate to varying degrees the complexity and physicochemical nature of biological membranes. Here, we summarize the presently most widely used minimal model membrane systems, namely Supported Lipid Bilayers (SLBs), Giant Unilamellar Vesicles (GUVs) and Giant Plasma Membrane Vesicles (GPMVs) and their applications for protein-membrane interactions.  相似文献   

8.
This study was undertaken to investigate the proposed in vivo pore function of PhoE protein, an Escherichia coli K12 outer membrane protein induced by growth under phosphate limitation, and to compare it with those of the constitutive pore proteins OmpF and OmpC. Appropriate mutant strains were constructed containing only one of the proteins PhoE, OmpF or OmpC, or none of these proteins at all. By measuring rates of nutrient uptake at low solute concentrations, the proposed pore function of PhoE protein was confirmed as the presence of the protein facilitates the diffusion of Pi through the outer membrane, such that a pore protein deficient strain behaves as a Km mutant. Comparison of the rates of permeation of Pi, glycerol 3-phosphate and glucose 6-phosphate through pores formed by PhoE, OmpF and OmpC proteins shows that PhoE protein is the most effective pore in facilitating the diffusion of Pi and phosphorus-containing compounds. The three types of pores were about equally effective in facilitating the permeation of glucose and arsenate. Possible reasons for the preference for Pi and Pi-containing solutes are discussed.  相似文献   

9.
Membrane transporters set the framework organising the complexity of plant metabolism in cells, tissues and organisms. Their substrate specificity and controlled activity in different cells is a crucial part for plant metabolism to run pathways in concert. Transport proteins catalyse the uptake and exchange of ions, substrates, intermediates, products and cofactors across membranes. Given the large number of metabolites, a wide spectrum of transporters is required. The vast majority of in silico annotated membrane transporters in plant genomes, however, has not yet been functionally characterised. Hence, to understand the metabolic network as a whole, it is important to understand how transporters connect and control the metabolic pathways of plant cells. Heterologous expression and in vitro activity studies of recombinant transport proteins have highly improved their functional analysis in the last two decades. This review provides a comprehensive overview of the recent advances in membrane protein expression and functional characterisation using various host systems and transport assays.  相似文献   

10.
G protein‐coupled receptors (GPCRs) are a class of membrane proteins that represent a major target for pharmacological developments. However, there is still little knowledge about GPCR structure and dynamics since high‐level expression and characterization of active GPCRs in vitro is extremely complicated. Here, we describe the recombinant expression and functional folding of the human Y2 receptor from inclusion bodies of E. coli cultures. Milligram protein quantities were produced using high density fermentation and isolated in a single step purification with a yield of over 20 mg/L culture. Extensive studies were carried out on in vitro refolding and stabilization of the isolated receptor in detergent solution. The specific binding of the ligand, the 36 residue neuropeptide Y (NPY), to the recombinant Y2 receptors in micellar form was shown by several radioligand affinity assays. In competition experiments, an IC50 value in low nanomolar range could be determined. Further, a KD value of 1.9 nM was determined from a saturation assay, where NPY was titrated to the recombinant Y2 receptors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
Abstract Outer membranes of Escherichia coli K-12 were used to isolate hybridoma cell lines that produce monoclonal antibodies against the FhuA (TonA) protein. Two monoclonal antibodies were obtained from independent immunization and fusion experiments. The antibodies belonged to the subclass IgG1 and κ, and IgG2b and κ, respectively. The latter antibody was purified by affinity chromatography on protein A-Sepharose. The culture supernatants of the hybridoma cell lines and the isolated antibody inhibited adsorption of the phages T5 and T1 to E. coli cells while binding of phage ø80, which also uses the FhuA protein as a receptor, remained unaffected. The specificity of the antibodies to the FhuA protein was supported by the prevention of killing of cells by colicin M and by the lack of inhibition of colicin B and of phage BG23. Transport of iron(III) as ferrichrome complex was not inhibited by the isolated antibody. However, partial competition with the adsorption of the phages T2, TuIb and T6 was observed which may indicate an organization of certain functional phage receptors into clusters.  相似文献   

12.
Numerous high‐value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state. This system has attracted interest because of its tendency to transport correctly folded proteins, but this trait renders it unable to export proteins containing disulfide bonds since these are normally acquired only in the periplasm; reduced substrates tend to be recognized as incorrectly folded and rejected. In this study we have used a series of novel strains (termed CyDisCo) which oxidise disulfide bonds in the cytoplasm, and we show that these cells efficiently export a range of disulfide‐containing proteins when a Tat signal peptide is attached. These test proteins include alkaline phosphatase (PhoA), a phytase containing four disulfide bonds (AppA), an antiinterleukin 1β scFv and human growth hormone. No export of PhoA or AppA is observed in wild‐type cells lacking the CyDisCo factors. The PhoA, AppA and scFv proteins were exported in an active form by Tat in the CyDisCo strain, and mass spectrometry showed that the vast majority of the scFv protein was disulfide‐bonded and correctly processed. The evidence indicates that this combination of Tat + CyDisCo offers a novel means of exporting active, correctly folded disulfide bonded proteins to the periplasm. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:281–290, 2014  相似文献   

13.
The hypothesis that intramembraneous particles, observed in the outer membrane of Escherichia coli by freeze-fracture electron microscopy, are the morphological representation of aqueous pores, was tested. A mutant which is deficient in five major outer membrane proteins, b, c, d, e and the phage λ receptor protein, contains a largely decreased number of intramembraneous particles and also shows a greatly decreased rate of uptake of several solutes. In derivatives of this strain which contain only one of these proteins in large amounts a strong decrease of the number of intramembraneous particles is observed, which is accompanied by a complete restoration of the rate of uptake of those solutes which use pores in which the protein in question is involved. The results provide strong evidence for the notion that an individual pore contains only one protein species, a property which has been found earlier for individual particles. The observed correlation between particles and aqueous pores strongly supports the hypothesis that the particles are the morphological representation of pores. Implications of this hypothesis for the structure of the particles are discussed.  相似文献   

14.
AIMS: To investigate the incidence of an R3 lipopolysaccharide (LPS)-core amplicon in a range of pathotypes of Escherichia coli, including Verocytotoxin-producing E. coli (VTEC), enteroaggregative E. coli (EAggEC) and enteropathogenic E. coli (EPEC). METHODS AND RESULTS: A total of 100 strains of E. coli belonging to a range of pathotypes, including 41 strains of VTEC, were screened for the genes encoding the R3 LPS-core using PCR. Fifty-four per cent produced an amplicon with the R3 primer set. Of the 41 VTEC, 66% had an R3 LPS-core with a PCR product being observed with all strains belonging to serotypes O26:H11, O111ac:H- and O145:H25. However, 46% of enteroaggregative E. coli and 50% of enteropathogenic E. coli were also shown to have an R3 LPS-core structure. CONCLUSIONS: Strains with an R3 LPS-core are widely distributed within the species E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Strains of E. coli with an R3 LPS-core structure appear not to be associated with a specific pathotype.  相似文献   

15.
探讨了不同方法对胶原蛋白膜进行改性处理,结果表明经过甲醛处理过的胶原蛋白膜具有良好的通透性及耐水性能。将胶原蛋白膜与卡拉胶凝胶颗粒形成组合固定化体系,用于大肠杆菌EP8-10固定化,天冬氨酸转氨酶活回收率达到了91.3%,反应20批次后,酶活回收率仍在80%以上。  相似文献   

16.
We describe a generic, GFP-based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane-integral flavocytochrome. The approach is scalable and suitable for high-throughput applications. The GFP-based pipeline will facilitate the characterization of the E. coli membrane proteome and serves as an important reference for the characterization of other membrane proteomes.  相似文献   

17.
Abstract The pH of the environment influenced the expression of outer membrane protein by S. enteritidis PT4 growing in broth. Growth in broth at pH 5 to 7 resulted in variation in expression of outer membrane proteins of 18 to 22 kDa. Bacteria became acid-fixed and non-viable following prolonged incubation in broth with a pH below 5, and expression of flagella was repressed.  相似文献   

18.
Escherichia coli K-12 produces both the OmpF and OmpC porins, the relative amounts of which in the outer membrane are affected in a reciprocal manner by the osmolarity of the growth medium. In contrast, E. coli B produces only the OmpF porin, regardless of the medium osmolarity. In this study, it was revealed that there is an extensive deletion within the ompC locus of the E. coli B chromosome. Cloning and nucleotide sequencing of the regulatory gene, ompR , of E. coli B revealed that there are two amino acid alterations (Lys-6 to Asn and Ala-130 to Thr) in the amino acid sequence of the OmpR protein, as compared with that of E. coli K-12. It is suggested that these particular amino acid alterations are responsible for the constitutive expression of the ompF gene observed in E. coli B.  相似文献   

19.
Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of “difficult to express” complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner.

This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.  相似文献   


20.
The overexpression of milligram quantities of protein remains a key bottleneck in membrane protein structural biology. A challenge of particular difficulty has been the overproduction of eukaryotic membrane proteins. In order to cope with the frequently poor expression levels associated with these challenging proteins, it is often necessary to screen a large number of homologues to find a well expressing clone. To facilitate this process using the heterologous, eukaryotic expression host Pichia pastoris, we have developed a simple fluorescent induction plate‐screening assay that allows for the rapid detection of well expressing clones of eukaryotic membrane proteins that have been fused to GFP. Using a eukaryotic membrane protein known to express well in P. pastoris (human aquaporin 4) and homologues of the ER associated membrane protein phosphatidylethanolamine N‐methyltransferase (PEMT), we demonstrate that when a large number of clones are screened, a small number of highly expressing “jackpot” clones can be isolated. A jackpot PEMT clone resulted in 5 mg/L yield after purification. The method allows for the facile simultaneous screening of hundreds of clones providing an alternate to in‐culture screening and will greatly accelerate the search for overexpressing eukaryotic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号