首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Libraries of randomized ribozymes have considerable potential as tools for the identification of functional genes critically involved in a biological phenotype of interest in vitro. We have used a ribozyme library in an in vivo mouse model to identify genes related to metastasis. We injected weakly metastatic melanoma cells that had been treated with the library intravenously into mice. We then isolated ribozymes that accelerated metastasis from pulmonary tumors that had developed from metastasizing cells. As candidates for metastasis-related genes that were targets of the isolated ribozymes, we identified five unknown and three known genes: stromal interaction molecule 1 (STIM1), polymerase gamma2 accessory subunit (Polg2), and cytochrome P450, family 2, subfamily d, polypeptide 22 (Cyp2d22). Repression of four of these by small interfering RNAs indeed resulted in the accelerated mobility of cells in in vitro scratch-wound assay. The further characterization of these candidate genes would provide clues to the complex mechanism(s) of metastasis.  相似文献   

4.
Kawasaki H  Taira K 《EMBO reports》2002,3(5):443-450
Novel ribozymes that couple the cleavage activity of hammerhead ribozymes with the unwinding activity of RNA helicase eIF4AI were constructed. This leads to extremely efficient cleavage of the target mRNA, regardless of the secondary structure of the RNA, and eliminates one of the major problems: many target sites on the RNA were previously inaccessible to cleavage due to secondary and/or tertiary structure formation. Moreover, libraries of hybrid ribozymes with randomized binding arms were introduced into cells. This procedure made it possible to readily identify the relevant genes associated with phenotype. Specifically, four genes known to be in the Fas-mediated apoptosis pathway were identified along with additional genes. This application of a randomized library of hybrid ribozymes represents a simple, powerful method for the identification of genes associated with specific phenotypes in the post-genome era.  相似文献   

5.
The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA.  相似文献   

6.
Positions 2-6 of the substrate-binding internal guide sequence (IGS) of the L-21 Sca I form of the Tetrahymena thermophila intron were mutagenized to produce a GN5 IGS library. Ribozymes within the GN5 library capable of efficient cleavage of an 818-nt human immunodeficiency virus type 1 vif-vpr RNA, at 37 degrees C, were identified by ribozyme-catalyzed guanosine addition to the 3' cleavage product. Three ribozymes (IGS = GGGGCU, GGCUCC, and GUGGCU) within the GN5 library that actively cleaved the long substrate were characterized kinetically and compared to the wild-type ribozyme (GGAGGG) and two control ribozymes (GGAGUC and GGAGAU). The two control ribozymes have specific sites within the long substrate, but were not identified during screening of the library. Under single-turnover conditions, ribozymes GGGGCU, GGCUCC, and GUGGCU cleaved the 818-nt substrate 4- to 200-fold faster than control ribozymes. Short cognate substrates, which should be structureless and therefore accessible to ribozyme binding, were cleaved at similar rates by all ribozymes except GGGGCU, which showed a fourfold rate enhancement. The rate of cleavage of long relative to short substrate under single-turnover conditions suggests that GGCUCC and GUGGCU were identified because of accessibility to their specific cleavage sites within the long substrate (substrate-specific effects), whereas GGGGCU was identified because of an enhanced rate of substrate binding despite a less accessible site in the long substrate. Even though screening was performed with 100-fold excess substrate (relative to total ribozyme), the rate of multiple-turnover catalysis did not contribute to identification of trans-cleaving ribozymes in the GN5 library.  相似文献   

7.
Essential genes which are required for normal nuclear migration and play a role in developmental processes have been isolated from model genetic organisms. One such gene is nudC (nuclear distribution C), which is required for positioning nuclei in the cytoplasm of the filamentous fungus Aspergillus nidulans and for normal colony growth. This gene is highly conserved, structurally and functionally, throughout evolution and the human homolog, HnudC, has been cloned. To study the function of nudC in higher eukaryotic cells, HnudC was downregulated by developing triple ribozyme constructs, consisting of two cis-acting ribozymes which liberate an internal trans-acting ribozyme targeted to HnudC. Efficient cleavage sites in HnudC mRNA were identified using a library selection technique and HnudC-targeted internal ribozymes were cloned into a triple ribozyme cassette. Triple ribozyme constructs were subcloned into an ecdysone-inducible expression vector and stably transfected into human embryonic 293 cells. Muristerone A induced expression of the HnudC ribozyme and produced specific reduction of HnudC mRNA. Downregulation of HnudC mRNA resulted in significant inhibition of cell proliferation in clones expressing the HnudC-targeted triple ribozyme, which was not observed in uninduced cells or cells transfected with vector alone. In induced cultures, many mitotic cells demonstrated defects in spindle architecture during mitosis. The most common defect observed was multiple mitotic spindle poles rather than the expected bipolar structure. These data demonstrate the fundamental importance of HnudC in eukaryotic cell proliferation and a functional role for HnudC in spindle formation at mitosis.  相似文献   

8.
The identification of proficient target sites within long RNA molecules, as well as the most efficient ribozymes for each, is a major concern for the use of ribozymes as gene suppressers. In vitro selection methods using combinatorial libraries are powerful tools for the rapid elucidation of interactions between macromolecules, and have been successfully used for different types of ribozyme study. This paper describes a new method for selecting effective target sites within long RNAs using a combinatorial library of self-cleaving hairpin ribozymes that includes all possible specificities. The method also allows the identification of the most appropriate ribozyme for each identified site. Searching for targets within the lacZ gene with this strategy yielded a clearly accessible site. Sequence analysis of ribozymes identified two variants as the most appropriate for this site. Both selected ribozymes showed significant inhibitory activity in the cell milieu.  相似文献   

9.
10.
11.
12.
Deep sequencing of viral or bacterial nucleic acids monitors the presence and diversity of microbes in select populations and locations. Metagenomic study of mammalian viromes can help trace paths of viral transmissions within or between species. High throughput sequencing of patient and untreated sewage microbiomes showed many sequences with no similarity to genomic sequences of known function or origin. To estimate the distribution of functional RNAs in these microbiomes, we used the hammerhead ribozyme (HHR) motif to search for sequences capable of assuming its three-way junction fold. Although only two of the three possible natural HHR topologies had been known, our analysis revealed highly active ribozymes that terminated in any of the three stems. The most abundant of these are type II HHRs, one of which is the fastest natural cis-acting HHR yet discovered. Altogether, 13 ribozymes were confirmed in vitro, but only one showed sequence similarity to previously described HHRs. Sequences surrounding the ribozymes do not generally show similarity to known genes, except in one case, where a ribozyme is immediately preceded by a bacterial RadC gene. We demonstrate that a structure-based search for a known functional RNA is a powerful tool for analysis of metagenomic datasets, complementing sequence alignments.  相似文献   

13.
14.
Proliferation of injured smooth muscle cells contributes to the reocclusion or restenosis of coronary arteries that often occurs following angioplasty procedures. We have identified and optimized nuclease-resistant ribozymes that efficiently cleave c-myb RNA. Three ribozymes targeting different sites in the c-myb mRNA were synthesized chemically and delivered to rat aortic smooth muscle cells with cationic lipids; all three inhibited serum-stimulated cell proliferation significantly. RNA molecules with two base substitutions in the catalytic core that render the ribozyme catalytically inactive had little effect on smooth muscle cell proliferation. Ribozymes with scrambled binding arm sequences also failed to affect cell cycle progression of vascular smooth muscle cells. Furthermore, inhibition of rat smooth muscle cell proliferation correlated with a reduction in intact c-myb mRNA. Efficacy of the chemically-modified ribozyme was compared directly to phosphorothioate antisense oligodeoxynucleotides targeting the same site in the c-myb RNA; the ribozyme had superior efficacy and showed greater specificity than the antisense molecules. Exogenously delivered ribozymes also inhibited porcine and human smooth muscle cell proliferation effectively. Ribozymes targeting c-myb or other regulators of smooth muscle cell proliferation may represent novel therapeutics for the treatment of restenosis after coronary angioplasty.  相似文献   

15.
Ribozyme mediated destruction of RNA in vivo.   总被引:38,自引:3,他引:35       下载免费PDF全文
Previous studies have demonstrated that high ribozyme to substrate ratios are required for ribozyme inhibitory function in nuclear extracts. To obtain high intracellular levels of ribozymes, tRNA genes, known to be highly expressed in most tissues, have been modified for use as ribozyme expression cassettes. Ribozyme coding sequences were placed between the A and the B box, internal promoter sequences of a Xenopus tRNAMet gene. When injected into the nucleus of frog oocytes, the ribozyme tRNA gene (ribtDNA) produces 'hammerhead' ribozymes which cleave the 5' sequences of U7snRNA, its target substrate, with high efficiency in vitro. Oocytes were coinjected with ribtDNA, U7snRNA and control substrate RNA devoid of a cleavage sequence. It was found that the ribtRNA remained localized mainly in the nucleus, whereas the substrate and the control RNA exited rapidly into the cytoplasm. However, sufficient ribtRNA migrated into the cytoplasm to cleave, and destroy, the U7snRNA. Thus, the action of targeted 'hammerhead' ribozymes in vivo is demonstrated.  相似文献   

16.
A hammerhead ribozyme directed against murine TNFalpha (mTNFalpha) mRNA has been constructed. In vitro studies showed that this ribozyme was released from the parent molecule by flanking cis-acting hammerhead and hairpin ribozymes. This same anti-mTNFalpha ribozyme specifically cleaved both synthetically derived substrate RNA and mTNFalpha mRNA within a pool of total cellular RNA. Endogenous delivery of this anti-mTNFalpha ribozyme via the self-cleaving cassette reduced mTNFalpha mRNA and protein levels in lipopolysaccharide (LPS)-stimulated, stably transfected murine macrophage RAW 264.7 cells. When complexed to liposomes and exogenously delivered to mouse peritoneal macrophages, the same ribozyme, with and without the cis-acting ribozymes, reduced mTNFalpha protein levels. However, an irrelevant ribozyme delivered in an identical fashion was also effective at reducing mTNFalpha protein levels. These data suggest that anti-mTNFalpha ribozymes can be constructed which efficiently cleave mTNFalpha mRNA, but irrelevant RNA/liposome complexes also effectively limit TNFalpha mRNA expression and can mimic functional ribozyme activity under in vitro conditions.  相似文献   

17.
A model system to examine the expression and antiviral activity of trans-acting ribozymes in mammalian cells has been developed and evaluated. Hairpin ribozymes were engineered to cleave a specific site, identified by a combinatorial activity-based selection method, within genomic and subgenomic RNA species of Sindbis virus. Transiently transfected cells expressed moderate levels of ribozyme (approximately 50,000 molecules/cell) with predominant nuclear localization and a short half-life (23 min). Stable cell lines expressed ribozymes at modest levels (approximately 2,000 molecules/cell). Ribozyme-mediated RNA cleavage activity was detected in cell extracts. Clonal cell lines were challenged with recombinant Sindbis virus, and viral replication was examined using plaque formation and green fluorescent protein assays. Significant inhibition of viral replication was observed in cells expressing the active antiviral ribozyme, and lower levels of inhibition in control cells expressing inactive or irrelevant ribozymes. These findings are consistent with a model in which inhibition of viral replication occurs via ribozyme cleavage of viral RNAs, suggesting that ribozymes may represent useful antiviral agents.  相似文献   

18.
Ribozymes are RNA molecules with enzymatic activity that can cleave target RNA molecules in a sequence specific manner. To date, various types of ribozyme have been constructed to cleave other RNAs and such trans-acting ribozymes include hammerhead, hairpin and HDV ribozymes. External guide sequence (EGS) can also induce the suppression of a gene-expression by taking advantage of cellular RNase P. Here we compared the activities of various functional RNA cleavers both in vitro and in vivo. The first purpose of this comparison was intended to determine the best ribozyme motif with the highest activity in cells. The second purpose is to know the correlation between the activities of ribozymes in vitro and in vivo. Our results indicated that the intrinsic cleavage activity of ribozymes is not the sole determinant that is responsible for the activity of a ribozyme in cultured cells.  相似文献   

19.
The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg2+] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号