首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient.

Results

The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior.

Conclusions

The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.  相似文献   

2.
The lung is composed of a series of branching conducting airways that terminate in grape-like clusters of delicate gas-exchanging airspaces called pulmonary alveoli. Maintenance of alveolar patency at end expiration requires pulmonary surfactant, a mixture of phospholipids and proteins that coats the epithelial surface and reduces surface tension. The surfactant lining is exposed to the highest ambient oxygen tension of any internal interface and encounters a variety of oxidizing toxicants including ozone and trace metals contained within the 10 kl of air that is respired daily. The pathophysiological consequences of surfactant oxidation in humans and experimental animals include airspace collapse, reduced lung compliance, and impaired gas exchange. We now report that the hydrophilic surfactant proteins A (SP-A) and D (SP-D) directly protect surfactant phospholipids and macrophages from oxidative damage. Both proteins block accumulation of thiobarbituric acid-reactive substances and conjugated dienes during copper-induced oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins. Low density lipoprotein oxidation is instantaneously arrested upon SP-A or SP-D addition, suggesting direct interference with free radical formation or propagation. The antioxidant activity of SP-A maps to the carboxyl-terminal domain of the protein, which, like SP-D, contains a C-type lectin carbohydrate recognition domain. These results indicate that SP-A and SP-D, which are ubiquitous among air breathing organisms, could contribute to the protection of the lung from oxidative stresses due to atmospheric or supplemental oxygen, air pollutants, and lung inflammation.  相似文献   

3.
Lung surfactant protein D (SP-D) can directly interact with carbohydrate residues on pulmonary pathogens and allergens, stimulate immune cells, and manipulate cytokine and chemokine profiles during the immune response in the lungs. Therapeutic administration of rfhSP-D, a recombinant homotrimeric fragment of human SP-D comprising the alpha-helical coiled-coil neck plus three CRDs, protects mice against lung allergy and infection caused by the fungal pathogen Aspergillus fumigatus. The high resolution crystal structures of maltose-bound rfhSP-D to 1.4A, and of rfhSP-D to 1.6A, define the fine detail of the mode and nature of carbohydrate recognition and provide insights into how a small fragment of human SP-D can bind to allergens/antigens or whole pathogens, and at the same time recruit and engage effector cells and molecules of humoral immunity. A previously unreported calcium ion, located on the trimeric axis in a pore at the bottom of the funnel formed by the three CRDs and close to the neck-CRD interface, is coordinated by a triad of glutamate residues which are, to some extent, neutralised by their interactions with a triad of exposed lysine residues in the funnel. The spatial relationship between the neck and the CRDs is maintained internally by these lysine residues, and externally by a glutamine, which forms a pair of hydrogen-bonds within an external cleft at each neck-CRD interface. Structural links between the central pore and the cleft suggest a possible effector mechanism for immune cell surface receptor binding in the presence of bound, extended natural lipopolysaccharide and phospholipid ligands. The structural requirements for such an effector mechanism, involving both the trimeric framework for multivalent ligand binding and recognition sites formed from more than one subunit, are present in both native hSP-D and rfhSP-D, providing a possible explanation for the significant biological activity of rfhSP-D.  相似文献   

4.
5.
Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates.  相似文献   

6.
The physiological properties and fatty acid content of 59 strains of Saccharomyces cerevisiae isolated from soft-drink factories, a fruit puree factory, a fuel-alcohol distillery and a winery were compared. Discriminant analysis of the results allocated the strains to four groups according to their source. Resistance to preservatives and temperature stress were correlated with differences in fatty acid composition. The fatty acid C18: 1Δ11, growth at pH 2 and in the presence of 200–600 mg 1-1 benzoate or sorbate, and maximal growth rate at 42°C were characteristics associated with yeasts from particular environments. However, tolerance of thermal stress and content of the C18: 2 fatty acid were associated with subspecies: the former species S. capensis, S. chevalieri , etc. The relative content of C10 : 0, C12 : 0 and C18 : 0 acids varied according to both isolation source and subspecies.  相似文献   

7.
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and striatum. Glial cell line-derived neurotrophic factor (GDNF) can effectively promote the differentiation and survival of many types of neurons, especially dopaminergic neurons, suggesting it could be a treatment for PD. Lipid rafts are highly dynamic cell membrane domains that contain numerous signal protein receptors, providing an important platform for signal transduction. Compelling evidence indicates that alterations in lipid rafts are associated with PD, and some studies have reported that GDNF can regulate the expression of caveolin-1, a lipid raft-marker protein. However, the precise effects of GDNF on lipid rafts remain unknown. We developed a cellular PD model, purified detergent-resistant membranes (membrane rafts), and performed proteomic and lipid metabolomics analyses to examine changes in lipid rafts after GDNF treatment. The results showed considerable protein and lipid alterations in response to GDNF, especially altered levels of dopamine-β-hydroxylase, heat shock 70 kDa protein, neural cell adhesion molecule, cytoskeletal proteins, and long-chain polysaturated/unsaturated fatty acids. These findings reveal a new avenue to explore the relationships between GDNF, lipid rafts, and PD and support the hypothesis that GDNF may be a useful treatment for PD.  相似文献   

8.
9.
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.  相似文献   

10.
Proteins/genes showing high sequence homology to the mammalian oxysterol binding protein (OSBP) have been identified in a variety of eukaryotic organisms from yeast to man. The unifying feature of the gene products denoted as OSBP-related proteins (ORPs) is the presence of an OSBP-type ligand binding (LB) domain. The LB domains of OSBP and its closest homologue bind oxysterols, while data on certain other family members suggest interaction with phospholipids. Many ORPs also have a pleckstrin homology (PH) domain in the amino-terminal region. The PH domains of the family members studied in detail are known to interact with membrane phosphoinositides and play an important role in the intracellular targeting of the proteins. It is plausible that the ORPs constitute a regulatory apparatus that senses the status of specific lipid ligands in membranes, using the PH and/or LB domains, and mediates information to yet poorly known downstream machineries. Functional studies carried out on the ORP proteins in different organisms indicate roles of the gene family in diverse cellular processes including control of lipid metabolism, regulation of vesicle transport, and cell signalling events.  相似文献   

11.
Proteins/genes showing high sequence homology to the mammalian oxysterol binding protein (OSBP) have been identified in a variety of eukaryotic organisms from yeast to man. The unifying feature of the gene products denoted as OSBP-related proteins (ORPs) is the presence of an OSBP-type ligand binding (LB) domain. The LB domains of OSBP and its closest homologue bind oxysterols, while data on certain other family members suggest interaction with phospholipids. Many ORPs also have a pleckstrin homology (PH) domain in the amino-terminal region. The PH domains of the family members studied in detail are known to interact with membrane phosphoinositides and play an important role in the intracellular targeting of the proteins. It is plausible that the ORPs constitute a regulatory apparatus that senses the status of specific lipid ligands in membranes, using the PH and/or LB domains, and mediates information to yet poorly known downstream machineries. Functional studies carried out on the ORP proteins in different organisms indicate roles of the gene family in diverse cellular processes including control of lipid metabolism, regulation of vesicle transport, and cell signalling events.  相似文献   

12.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC.  相似文献   

13.
Thrombin plays a critical role in hemostasis, thrombosis, and inflammation. However, the responsible intracellular signaling pathways triggered by thrombin are still not well defined. We report here that thrombin rapidly and transiently induces activation of protein kinase D (PKD) in aortic smooth muscle cells. Our data demonstrate that protein kinase C (PKC) inhibitors completely block thrombin-induced PKD activation, suggesting that thrombin induces PKD activation via a PKC-dependent pathway. Furthermore, our results show that thrombin rapidly induces PKC delta phosphorylation and that the PKC delta-specific inhibitor rottlerin blocks thrombin-induced PKD activation, suggesting that PKC delta mediates the thrombin-induced PKD activation. Using dominant negative approaches, we demonstrated that expression of a dominant negative PKC delta inhibits the phosphorylation and activation of PKD induced by thrombin, whereas neither PKC epsilon nor PKC zeta affects thrombin-induced PKD activation. In addition, our results of co-immunoprecipitation assays showed that PKD forms a complex with PKC delta in smooth muscle cells. Taken together, the findings of the present study demonstrate that thrombin induces activation of PKD and reveal a novel role of PKC delta in mediating thrombin-induced PKD activation in vascular smooth muscle cells.  相似文献   

14.
Human protein C (HPC) is an antithrombotic serine protease that circulates in the plasma as several glycoforms. To examine the role of glycosylation in the function of this protein, we singly eliminated each of the four potential N-linked glycosylation sites by site-directed mutagenesis of Asn to Gln at amino acid positions 97, 248, and 313 (HPC derivatives Q097, Q248, and Q313) or at the unusual consensus sequence Asn-X-Cys at 329 (HPC derivative Q329). The cDNAs for wild type and each derivative were inserted into expression vectors and expressed both transiently and stably in human 293 and hamster AV12-664 cells. We demonstrate that N-linked glycosylation at position 97 in the light chain of HPC is critical for efficient secretion and affects the degree of core glycosylation at Asn-329. Glycosylation at position 248 affects the intracellular processing of the internal Lys-Arg (KR) KR cleavage site, and partial glycosylation at the sequence Asn-329-X-Cys is responsible for the natural alpha-glycoform. Altering the glycosylation pattern of the protein had no significant effect on the level of fully gamma-carboxylated HPC secreted from the 293 cell line. However, elimination of glycosylation sites in the heavy chain resulted in a 2- to 3-fold increase in anticoagulant activity. Utilizing synthetic substrate, both the Km and kcat were affected, depending on the specific glycosylation site eliminated. However, there were no significant differences in the inhibition kinetics by alpha-1-antitrypsin (association rate constants of 10-11 M-1s-1 and t1/2 of 27-29 min at 40 microM alpha-1-antitrypsin) or t1/2 in human plasma (17-18 min). A comparison of the rate of activation of each derivative by thrombin alone or in complex with thrombomodulin revealed that Q313 was activated approximately 2.5-fold faster than wt HPC, independent of calcium concentration. This increase in rate was due to an enhanced affinity of thrombin-thrombomodulin for Q313, as indicated by a 3-fold reduction in Km. Overall, our studies demonstrate that glycosylation at different sites in HPC affects distinct properties of this complex protein. Furthermore, we demonstrate the ability to improve the catalytic efficiency of this enzyme through carbohydrate modifications.  相似文献   

15.
16.
The oral cavity and the salivary glands are open to the oral environment and are thus exposed to multiple microbiological, chemical and mechanical influences. The existence of an efficient defense system is essential to ensure healthy and physiological function of the oral cavity. Surfactant proteins play an important role in innate immunity and surface stability of fluids. This study aimed to evaluate the expression and presence of surfactant proteins (SP) A, B, C, and D in human salivary glands and saliva. The expression of mRNA for SP-A, -B, -C and -D was analyzed by RT-PCR in healthy parotid and submandibular glands. Deposition of all surfactant proteins was determined with monoclonal antibodies by means of Western blot analysis and immunohistochemistry in healthy tissues and saliva of volunteers. Our results show that all four surfactant proteins SP-A, SP-B, SP-C and SP-D are peptides of saliva and salivary glands. Based on the known direct and indirect antimicrobial effects of collectins, the surfactant-associated proteins A and D appear to be involved in immune defense inside the oral cavity. Furthermore, by lowering surface tension between saliva and the epithelial lining of excretory ducts, SP-B and SP-C may assist in drainage and outflow into the oral cavity. Further functions such as pellicle formation on teeth have yet to be determined.  相似文献   

17.
Protein bodies isolated from dehulled seeds of Lupinus angustifolius (cv New Zealand Bitter Blue) contained 73 % protein, of which 78 % were globul  相似文献   

18.

Background

Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s).

Methodology/Principal Findings

CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation.

Conclusions/Significance

The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号