首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Upregulation of the ATP-binding cassette (ABC) transporter genes CDR1 and CDR2 (Candida drug resistance 1 and 2) is a common mechanism observed in Candida albicans clinical isolates developing resistance to the class of azole antifungals. In this work, the regulatory elements of both genes were delimited using a reporter system in an azole-susceptible strain exposed to oestradiol, which allows transient induction of these genes. We found two regulatory elements in the CDR1 promoter: one responsible for basal expression (basal expression element; BEE) and the other required for oestradiol responsiveness (drug-responsive element I; DREI). In the CDR2 promoter, a single regulatory element responsible for oestradiol responsiveness (DREII) was detected. Both DREs shared a consensus of 21 bp with the sequence 5'-CGGA(A/T)ATCGGATATTTTTTTT-3' having no equivalent to known eukaryotic regulatory sequence. Consistent with this finding, two other C. albicans genes identified by a search for the presence of DRE in the C. albicans genome sequence database were responsive to oestradiol. Finally, the regulatory elements found in CDR1 and CDR2 were also functional in an azole-resistant strain with constitutive high expression of both transporters. These results suggest that, although CDR1 and CDR2 upregulation can be obtained by transient drug-induced and constitutive upregulation, these two processes converge to the same regulatory elements and probably mobilize the same trans-acting factors.  相似文献   

3.
Elevated expression of the plasma membrane drug efflux pump proteins Cdr1p and Cdr2p was shown to accompany decreased azole susceptibility in Candida albicans clinical isolates. DNA sequence analysis revealed extensive allelic heterozygosity, particularly of CDR2. Cdr2p alleles showed different abilities to transport azoles when individually expressed in Saccharomyces cerevisiae. Loss of heterozygosity, however, did not accompany decreased azole sensitivity in isogenic clinical isolates. Two adjacent non-synonymous single nucleotide polymorphisms (NS-SNPs), G1473A and I1474V in the putative transmembrane (TM) helix 12 of CDR2, were found to be present in six strains including two isogenic pairs. Site-directed mutagenesis showed that the TM-12 NS-SNPs, and principally the G1473A NS-SNP, contributed to functional differences between the proteins encoded by the two Cdr2p alleles in a single strain. Allele-specific PCR revealed that both alleles were equally frequent among 69 clinical isolates and that the majority of isolates (81%) were heterozygous at the G1473A/I1474V locus, a significant (P < 0.001) deviation from the Hardy-Weinberg equilibrium. Phylogenetic analysis by maximum likelihood (Paml) identified 33 codons in CDR2 in which amino acid allelic changes showed a high probability of being selectively advantageous. In contrast, all codons in CDR1 were under purifying selection. Collectively, these results indicate that possession of two functionally different CDR2 alleles in individual strains may confer a selective advantage, but that this is not necessarily due to azole resistance.  相似文献   

4.
Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida . The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 μg mL−1); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1 , CDR2 , MDR1 , encoding for efflux pumps, and ERG11 , encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly ( P >0.05), probably acting as a Cdrp blocker.  相似文献   

5.
6.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Many Candida albicans azole-resistant (AR) clinical isolates overexpress the CDR1 and CDR2 genes encoding homologous multidrug transporters of the ATP-binding cassette family. We show here that these strains also overexpress the PDR16 gene, the orthologue of Saccharomyces cerevisiae PDR16 encoding a phosphatidylinositol transfer protein of the Sec14p family. It has been reported that S. cerevisiae pdr16Delta mutants are hypersusceptible to azoles, suggesting that C. albicans PDR16 may contribute to azole resistance in these isolates. To address this question, we deleted both alleles of PDR16 in an AR clinical strain overexpressing the three genes, using the mycophenolic acid resistance flipper strategy. Our results show that the homozygous pdr16Delta/pdr16Delta mutant is approximately twofold less resistant to azoles than the parental strain whereas reintroducing a copy of PDR16 in the mutant restored azole resistance, demonstrating that this gene contributes to the AR phenotype of the cells. In addition, overexpression of PDR16 in azole-susceptible (AS) C. albicans and S. cerevisiae strains increased azole resistance by about twofold, indicating that an increased dosage of Pdr16p can confer low levels of azole resistance in the absence of additional molecular alterations. Taken together, these results demonstrate that PDR16 plays a role in C. albicans azole resistance.  相似文献   

14.
15.
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure to fluconazole and fluphenezine for 28 passages. Thirty-five differentially expressed genes were identified in the hyper-resistant mutant by microarray analysis; among the 13 up-regulated genes, we successfully constructed the rta2 and ipf14030 null mutants in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1. Using spot dilution assay, we demonstrated that the disruption of RTA2 increased the susceptibility of C. albicans to azoles while the disruption of IPF14030 did not influence the sensitivity of C. albicans to azoles. Meanwhile, we found that ectopic overexpression of RTA2 in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1 conferred resistance to azoles. RTA2 expression was found elevated in clinical azole-resistant isolates of C. albicans. In conclusion, our findings suggest that RTA2 is involved in the development of azole resistance in C. albicans.  相似文献   

16.
环状RNA(circular RNA, circRNA)是存在于真核细胞中的一种非线性RNA,具有稳定性、特异性以及进化保守性等特征,通过发挥microRNA的海绵作用,对其靶基因进行调控。与线性RNA相比,环状RNA自身的闭合环状结构使其更具优越性。小脑变性相关蛋白1反义转录物 (cerebellar degeneration-related protein 1 antisense,CDR1as)作为一种竞争性内源RNA(competing endogenous RNA,ceRNA)间接调控miR-7靶标,通过多种途径影响多种疾病的发生和发展。本文就CDR1as的发现、来源及特征、功能以及与不同疾病的相关性作一概述。  相似文献   

17.

Background  

In the past decades, the prevalence of candidemia has increased significantly and drug resistance has also become a pressing problem. Overexpression of CDR1, an efflux pump, has been proposed as a major mechanism contributing to the drug resistance in Candida albicans. It has been demonstrated that biological fluids such as human serum can have profound effects on antifungal pharmacodynamics. The aim of this study is to understand the effects of serum in drug susceptibility via monitoring the activity of CDR1 promoter of C. albicans.  相似文献   

18.
The third complementarity-determining regions (CDR3s) of antibodies and T cell receptors (TCRs) have been shown to play a major role in antigen binding and specificity. Consistent with this notion, we demonstrated previously that high-affinity, peptide-specific TCRs could be generated in vitro by mutations in the CDR3alpha region of the 2C TCR. In contrast, it has been argued that CDR1 and CDR2 are involved to a greater extent than CDR3s in the process of MHC restriction, due to their engagement of MHC helices. Based on this premise, we initiated the present study to explore whether higher affinity TCRs generated through mutations in these CDRs or other regions would lead to significant reductions in peptide specificity (i.e. the result of greater binding energy gained through interactions with major histocompatibility complex (MHC) helices). Yeast-display technology and flow sorting were used to select high-affinity TCRs from libraries of CDR mutants or random mutants. High-affinity TCRs with mutations in the first residue of the Valpha, CDR1, CDR2, or CDR3 were isolated. Unexpectedly, every TCR mutant, including those in CDR1 and CDR2, retained remarkable peptide specificity. Molecular modeling of various mutants suggested that such exquisite specificity may be due to: (1) enhanced electrostatic interactions with key peptide or MHC residues; or (2) stabilization of CDRs in specific conformations. The results indicate that the TCR is positioned so that virtually every CDR can contribute to the antigen-specificity of a T cell. The conserved diagonal docking of TCRs could thus orient each CDR loop to sense the peptide directly or indirectly through peptide-induced effects on the MHC.  相似文献   

19.
CDR1as is a well-identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness-related genes and impairs the cell's multi-differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness-related genes and enhances these abilities. Furthermore, our results indicate that the RNA-binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness-related genes in PDLSCs by inhibiting miR-7-mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.  相似文献   

20.
Adaptation to inhibitory concentrations of the antifungal agent fluconazole was monitored in replicated experimental populations founded from a single, drug-sensitive cell of the yeast Candida albicans and reared over 330 generations. The concentration of fluconazole was maintained at twice the MIC in six populations; no fluconazole was added to another six populations. All six replicate populations grown with fluconazole adapted to the presence of drug as indicated by an increase in MIC; none of the six populations grown without fluconazole showed any change in MIC. In all populations evolved with drug, increased fluconazole resistance was accompanied by increased resistance to ketoconazole and itraconazole; these populations contained ergosterol in their cell membranes and were amphotericin sensitive. The increase in fluconazole MIC in the six populations evolved with drug followed different trajectories, and these populations achieved different levels of resistance, with distinct overexpression patterns of four genes involved in azole resistance: the ATP-binding cassette transporter genes, CDR1 and CDR2; the gene encoding the target enzyme of the azoles in the ergosterol biosynthetic pathway, ERG11; and the major facilitator gene, MDR1. Selective sweeps in these populations were accompanied by additional genomic changes with no known relationship to drug resistance: loss of heterozygosity in two of the five marker genes assayed and alterations in DNA fingerprints and electrophoretic karyotypes. These results show that chance, in the form of mutations that confer an adaptive advantage, is a determinant in the evolution of azole drug resistance in experimental populations of C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号