首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 858 毫秒
1.
Many plant species have the capacity to regenerate asexually by resprouting from stem and leaf fragments. In the pan‐tropical shrub genus Piper, this tendency is thought to be higher in shade‐tolerant than light‐demanding species, and to represent a trade‐off with annual seed production. Here we use molecular markers to identify clones in five Piper species varying in light requirements. We test predictions that (i) asexual recruitment success is highest in shade‐tolerant species, and (ii) that consequently, shade‐tolerant species are characterized by lower genotypic diversity than light‐demanding Piper. We found that two shade‐tolerant Piper species recruited asexually more frequently (36–42% of sampled shoots were of asexual origin) than, two light‐demanding and one shade‐tolerant species (0–26%). Furthermore, as predicted, genotypic diversity was negatively correlated with the frequency of asexual recruitment in the population. Nonetheless, genotypic diversity of Piper was high compared with other clonal plants. The proportion of unique genotypes found per population ranged from 0.58 to 1.0 and the genotypic Simpson's diversity ranged from 0.93 to 1.0 for all five species. Our results suggest that even though asexual reproduction plays an important role in maintaining local populations of Piper in the understory, it does not seem to reduce genotypic diversity to levels that will threaten these species ability to respond to environmental change. Abstract in Spanish is available in the online version of this article.  相似文献   

2.
The balance between clonal propagation and sexual reproduction varies among species. Although theory predicts an impact of clonal growth on both‐ within‐ and between population genetic structure, most empirical evidence available to date does not reveal sharp differences between sexually reproducing and clonal species. This has been attributed mainly to the fact that even low levels of sexual recruitment can maintain high levels of genetic diversity. Here we study the effects of prolonged clonal growth and very low rates of sexual recruitment on the genetic structure of the perennial Maianthemum bifolium, an outcrossing understorey species of temperate forests. Average genotypic diversity (0.37) of the populations, as revealed by AFLP, was above the average values reported for species of similar characteristics, but some populations were extremely poor in genotypes. Fruiting success was positively correlated with genotypic diversity, probably as a result of shortage in mating types and compatible pollen in populations poor in genotypes. This was confirmed by a pollination experiment. Fruiting success increased by a factor three when individuals were hand‐pollinated with pollen from a nearby population compared to hand‐pollinations with pollen from the own population. Furthermore, the fruiting success after natural pollination (control individuals) was positively related to number of nearby populations which could act as pollen sources. Given the limited colonization capacity of the species (no seed flow), and the long time since fragmentation of the forest fragments studied, between‐population genetic differentiation was relatively low (Φst=0.14). Lack of genetic drift due to long generation times and very limited sexual recruitment is probably responsible for this. Our results show that prolonged clonal growth and lack of sexual recruitment may affect within‐ and between‐ population genetic structure and the capability for sexual reproduction.  相似文献   

3.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

4.
Surveys of genetic diversity patterns of self‐incompatible clonal polyploid plant species are still scarcer than those of diploid plant species. Therefore, I studied the phylogeographical history of Linnaea borealis subsp. borealis to shed light on the colonization history of this clonal self‐incompatible polyploid plant in Eurasia using selected regions of plastid DNA and genetic diversity patterns of 22 populations of this species employing AFLP markers. I also addressed the question of whether the genetic diversity patterns in L. borealis subsp. borealis in Eurasia are similar to those of earlier published studies of clonal self‐incompatible diploid or polyploid plants. This survey revealed that the shallow phylogeographical history (six plastid haplotypes forming one haplogroup, 100% bootstrap support) and moderate genome‐wide diversity estimated using AFLP markers (Fragpoly = 10.8–38.9%, I = 0.060–0.180, FST = 0.289) were general characteristics of L. borealis subsp. borealis in its Eurasian range. The sampling strategy, in most cases at 1–2‐m or even 3–5‐m intervals, showed that a balance between vegetative and sexual reproduction and limited pollen dispersal among compatible mates can be important for genetic diversity patterns in populations of this taxon. Despite the fact that one‐half of the investigated populations were strongly isolated, they still preserved similar levels of genetic diversity across the geographical range. I found no support for the hypothesis that a bottleneck and/or inbreeding had accompanied habitat fragmentation as factors shaping genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 64–76.  相似文献   

5.
Herrera CM  Pozo MI  Bazaga P 《Molecular ecology》2011,20(21):4395-4407
Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety‐one isolates of the flower‐living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band‐based methods and model‐ and nonmodel‐based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite‐dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φst = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite‐dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality.  相似文献   

6.
Many bryophytes exhibit specific life forms that result in the formation of distinct patches. This is primarily achieved by consequent vegetative multiplication through indeterminate growth and vegetative reproduction. Little, however, is known about the underlying mechanisms and genetic patterns. In this study on vegetative multiplication in bryophytes, we apply morpho-anatomical and molecular (AFLP fingerprinting) techniques to analyze the vegetative reproduction system, clonal diversity, and habitat colonization of a pleurocarpous moss, Rhytidium rugosum (Rhytidiaceae). Morpho-anatomically, three types of vegetative diaspores are identified and illustrated: ramets, separated after decay and disintegration of older shoot parts (clonal reproduction); brood branches/branchlets; and caducous shoot apices (both vegetative reproduction s.str.). The AFLP fingerprinting of 35 samples (from two plots in Thuringia, further German populations, and from France, Russia, and Canada) resulted in the identification of three clones from the two plots, each comprising two to 15 samples with identical fingerprints. Samples from one clone occurred in both plots, thus proving dispersal of vegetative diaspores. The AFLP analysis further revealed close relationships of the plot samples, which suggest a clonal rather than generative (sexual) origin of the population.  相似文献   

7.
Aquatic plant invasions are often associated with long‐distance dispersal of vegetative propagules and prolific clonal reproduction. These reproductive features combined with genetic bottlenecks have the potential to severely limit genetic diversity in invasive populations. To investigate this question we conducted a global scale population genetic survey using amplified fragment length polymorphism markers of the world’s most successful aquatic plant invader –Eichhornia crassipes (water hyacinth). We sampled 1140 ramets from 54 populations from the native (South America) and introduced range (Asia, Africa, Europe, North America, Central America and the Caribbean). Although we detected 49 clones, introduced populations exhibited very low genetic diversity and little differentiation compared with those from the native range, and ~80% of introduced populations were composed of a single clone. A widespread clone (‘W’) detected in two Peruvian populations accounted for 70.9% of the individuals sampled and dominated in 74.5% of the introduced populations. However, samples from Bangladesh and Indonesia were composed of different genotypes, implicating multiple introductions to the introduced range. Nine of 47 introduced populations contained clonal diversity suggesting that sexual recruitment occurs in some invasive sites where environmental conditions favour seedling establishment. The global patterns of genetic diversity in E. crassipes likely result from severe genetic bottlenecks during colonization and prolific clonal propagation. The prevalence of the ‘W’ genotype throughout the invasive range may be explained by stochastic sampling, or possibly because of pre‐adaptation of the ‘W’ genotype to tolerate low temperatures.  相似文献   

8.
The cultivated potato (Solanum tuberosum ssp. tuberosum) has more than 200 related wild species distributed along the Andes, adapted to a wide range of geographical and ecological areas. Since the last century, several collection expeditions were carried out to incorporate genetic variability into the potato germplasm around the world. However, little is known about the reproductive ecology and genetic population structure of natural potato population from field studies. The aim of this work is to study, in the field, the genetic variability and reproductive strategies of populations of one of the most widely distributed potato species in Argentina, Solanum kurtzianum, growing in Mendoza province. AFLP markers showed that the genetic variability is mainly present among plants within populations, indicating that in the sampled populations, sexual reproduction is more relevant than clonal multiplication (by tubers). Additional evidence was obtained evaluating the genetic diversity in populations with a distribution in patches, where several genotypes were always detected. From a field study performed in the Villavicencio Natural Reserve, we found that the average number of plump seeds per fruit was 94.3, identified and calculated the foraging distance of four insect pollinators, and demonstrated the seed dispersal by storm water channels. We argue that the breeding system, the two modes of reproduction and the ecological interaction described here may have a prominent role in determining the genetic structure of S. kurtzianum populations, and discuss the importance of field studies on population genetics, reproductive biology and ecology to design collections and conservation strategies.  相似文献   

9.
Multiple clonal isolates from a geographic population of Alexandrium tamarense (M. Lebour) Balech from the North Sea exhibited high genotypic and phenotypic variation. Genetic heterogeneity was such that no clonal lineage was repeatedly sampled according to genotypic markers specified by amplified fragment length polymorphism (AFLP) and microsatellites. Subsampling of genotypic data from both markers showed that ordination of individuals by pair‐wise genetic dissimilarity indices was more reliable by AFLP (482 biallelic loci) than by microsatellites (18 loci). However, resulting patterns of pair‐wise genetic similarities from both markers were significantly correlated (Mantel test P < 0.005). The composition of neurotoxins associated with paralytic shellfish poisoning (PSP) was also highly diverse among these isolates and allowed clustering of toxin phenotypes based on prevalence of individual toxins. Correlation analysis of pair‐wise relatedness of individual clones according to PSP‐toxin profiles and both genotypic characters failed to yield close associations. The expression of allelochemical properties against the cryptophyte Rhodomonas salina (Wis?ouch) D. R. A. Hill et Wetherbee and the predatory dinoflagellate Oxyrrhis marina Dujard. manifested population‐wide variation of responses in the target species, from no visible effect to complete lysis of target cells. Whereas the high genotypic variation indicates high potential for adaptability of the population, we interpret the wide phenotypic variation as evidence for lack of strong selective pressure on respective phenotypic traits at the time the population was sampled. Population markers as applied here may elucidate the ecological significance of respective traits when followed under variable environmental conditions, thereby revealing how variation is maintained within populations.  相似文献   

10.
Many asexual animal populations comprise a mixture of genetically different lineages, but to what degree this genetic diversity leads to ecological differences remains often unknown. Here, we test whether genetically different clonal lineages of Aptinothrips grass thrips differ in performance on a range of plants used as hosts in natural populations. We find a clear clone‐by‐plant species interactive effect on reproductive output, meaning that clonal lineages perform differently on different plant species and thus are characterized by disparate ecological niches. This implies that local clonal diversities can be driven and maintained by frequency‐dependent selection and that resource heterogeneity can generate diverse clone assemblies.  相似文献   

11.
This paper provides an analysis of genetic variability in local populations of the clonal moss Pleurochaete squarrosa, a Mediterranean moss typical of post-fire recovery, and characterised by asexual reproduction. ISSR (Internal Simple Sequence Repeats) primers and trnLUAA (intron of plastid gene for Leu tRNA) length polymorphism were employed to evaluate genetic structure in five southern Italy populations of this moss. Both molecular tools highlight high values of genetic diversity with geographic structure of sampled populations and a low gene flow among the investigated sites. Gene diversity is significant at every hierarchical level of sampling, and generally increases from lower to higher hierarchical levels. Among other factors, the ubiquitous genetic variability detected in P. squarrosa can be related to continuous, occasionally massive, short-range recruitment of propagules, and to the high degree of intermingling, both favoured by the modality of vegetative reproduction and growth occurring in the species.  相似文献   

12.
In moist tropical forests resprouting may be an important component of life history, contributing to asexual reproduction through the clonal spread of individuals derived from shoot fragments. However, in contrast to other ecosystems where resprouting is common, the ecological correlates of resprouting capacity in tropical forests remain largely unexplored. In this study we characterized shade tolerance, resprouting capacity and sexual reproductive success of eight co-occurring Piper species from lowland forests of Panama. In field experiments we found that shade-tolerant Piper species had a higher capacity to regenerate from excised or pinned stem fragments than light-demanding species in both gap and understory light conditions. In contrast, shade-tolerant species had lower recruitment probabilities from seeds, as a consequence of lower initial seed viability, and lower seedling emergence rates. All Piper species needed gap conditions for successful seedling establishment. Of 8,000 seeds sown in the understory only 0.2% emerged. In gaps, seed germination of light-demanding species was between 10 and 50%, whereas for shade-tolerant species it was 0.5–9.8%. We propose that the capacity to reproduce asexually from resprouts could be adaptive for shade-tolerant species that are constantly exposed to damage from falling litter in the understory. Resprouting may allow Piper populations to persist and spread despite the high rate of pre-dispersal seed predation and low seed emergence rates. Across Piper species, we detected a trade-off between resprouting capacity and the annual viable seed production per plant but not with annual seed mass produced per plant. This suggests that species differences in sexual reproductive success may not necessarily result from differential resource allocation. Instead we suggest that low sexual reproductive success in the understory may in part reflect reduced genetic diversity in populations undergoing clonal growth, resulting in self-fertilization and in-breeding depression.  相似文献   

13.
Phytophagous insects with wide host ranges often exhibit host‐associated genetic structure. We used microsatellite analysis to assess the population structure of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), a serious pest on many economically important crops worldwide. We sampled aphids from five host plant species in Iran and detected strong population subdivision, with an overall multilocus FST of 0.191. The matrix of pairwise FST values indicated that differentiation between populations collected from different hosts was significantly stronger than between populations from the same hosts. Host‐associated differentiation was further supported by Bayesian clustering analyses, which grouped all samples from cotton together with aubergine, and all samples from cucumber together with pumpkin and hibiscus. This adds to the growing body of evidence that many seemingly generalist aphids are in fact an assemblage of host‐specialized lineages. Although we detected a clear genetic signature of clonal reproduction, the genotypic diversity of A. gossypii in Iran is much higher than in other parts of the world. Particularly samples from cotton exhibited a surprisingly high genotypic diversity, suggesting that many lineages on this host are cyclical parthenogens that engage in regular bouts of sexual reproduction.  相似文献   

14.
Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species’ mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.  相似文献   

15.
Many plant species combine sexual and clonal reproduction. Clonal propagation has ecological costs mainly related to inbreeding depression and pollen discounting; at the same time, species able to reproduce clonally have ecological and evolutionary advantages being able to persist when conditions are not favorable for sexual reproduction. The presence of clonality has profound consequences on the genetic structure of populations, especially when it represents the predominant reproductive strategy in a population. Theoretical studies suggest that high rate of clonal propagation should increase the effective number of alleles and heterozygosity in a population, while an opposite effect is expected on genetic differentiation among populations and on genotypic diversity. In this study, we ask how clonal propagation affects the genetic diversity of rare insular species, which are often characterized by low levels of genetic diversity, hence at risk of extinction. We used eight polymorphic microsatellite markers to study the genetic structure of the critically endangered insular endemic Ruta microcarpa. We found that clonality appears to positively affect the genetic diversity of R. microcarpa by increasing allelic diversity, polymorphism, and heterozygosity. Moreover, clonal propagation seems to be a more successful reproductive strategy in small, isolated population subjected to environmental stress. Our results suggest that clonal propagation may benefit rare species. However, the advantage of clonal growth may be only short‐lived for prolonged clonal growth could ultimately lead to monoclonal populations. Some degree of sexual reproduction may be needed in a predominantly clonal species to ensure long‐term viability.  相似文献   

16.
17.
The preponderant clonal evolution hypothesis (PCE) predicts that frequent clonal reproduction (sex between two clones) in many pathogens capable of sexual recombination results in strong linkage disequilibrium and the presence of discrete genetic subdivisions characterized by occasional gene flow. We expand on the PCE and predict that higher rates of clonal reproduction will result in: (1) morphologically cryptic species that exhibit (2) low within‐species variation and (3) recent between‐species divergence. We tested these predictions in the Caribbean lizard malaria parasite Plasmodium floridense using 63 single‐infection samples in lizards collected from across the parasite's range, and sequenced them at two mitochondrial, one apicoplast, and five nuclear genes. We identified 11 provisionally cryptic species within P. floridense, each of which exhibits low intraspecific variation and recent divergence times between species (some diverged approximately 110,000 years ago). Our results are consistent with the hypothesis that clonal reproduction can profoundly affect diversification of species capable of sexual recombination, and suggest that clonal reproduction may have led to a large number of unrecognized pathogen species. The factors that may influence the rates of clonal reproduction among pathogens are unclear, and we discuss how prevalence and virulence may relate to clonal reproduction.  相似文献   

18.
Studies on clonal plants indicate that the proportion between clonal and sexual reproduction can be variable, depending on local habitat conditions and the biological characteristics of the species. In the present study, we assessed this question in Trifolium alpestre by assaying genetic diversity and spatial genotypic structure of natural populations with the use of allozyme markers. Populations revealed high genetic diversity as well as strong spatial structure of multilocus genotypes. The values of genetic diversity were moderately high. Spatially aggregated, identical genotypes spread up to 15 m along linear transects and across 4‐m2 plots indicate extensive clonal propagation within populations. However, the existence of numerous unique and small‐sized clones reflects significant contribution from sexual reproduction. Spatially and temporarily stochastic soil disturbances have evidently opened new opportunities for the successful sexual recruitment from the permanent soil seed bank and thus counteracted losses of genetic and genotypic diversity. Seed production in all populations during the three study years was low, in average up to 1.5–2.4 seeds per shoot. The almost total lack of seed set for 57 bagged flower heads on genotypes grown in a common garden indicates that T. alpestre needs pollinators for seed production.  相似文献   

19.
Genetic diversity is often considered important for species that inhabit highly disturbed environments to allow for adaptation. Many variables affect levels of genetic variation; however, the two most influential variables are population size and type of reproduction. When analyzed separately, both small population size and asexual reproduction can lead to reductions in genetic variation, although the exact nature of which can be contrasting. Genetic variables such as allelic richness, heterozygosity, inbreeding coefficient, and population differentiation have opposite predictions depending upon the trait (rarity or clonality) examined. The goal of this study was to quantify genetic variation and population differentiation in a species that resides in a highly stochastic environment and is both rare and highly clonal, Spiraea virginiana, and to determine if one trait is more influential genetically than the other. From populations sampled throughout the natural range of S. virginiana, we used microsatellite loci to estimate overall genetic variation. We also calculated clonal structure within populations, which included genotypic richness, evenness, and diversity. Gene flow was investigated by quantifying the relationship between genetic and geographic distances, and population differentiation (θ) among populations. Observed heterozygosity, genotypic richness, and inbreeding coefficients were found to be representative of high clonal reproduction (averaging 0.505, 0.1, and –0.356, respectively) and the number of alleles within populations was low (range = 2.0–3.6), being more indicative of rarity. Population differentiation (θ) among populations was high (average = 0.302) and there was no relationship between genetic and geographic distances. By examining a species that exhibits two traits that both can lead to reduced genetic variation, we may find an enhanced urgency for conservation. Accurate demographic counts of clonal species are rarely, if ever, possible and genetic exploration for every species is not feasible. Therefore, the conclusions in this study can be potentially extrapolated to other riparian, clonal shrubs that share similar biology as S. virginiana.  相似文献   

20.
Asexuality confers demographic advantages to invasive taxa, but generally limits adaptive potential for colonizing of new habitats. Therefore, pre-existing adaptations and habitat tolerance are essential in the success of asexual invaders. We investigated these key factors of invasiveness by assessing reproductive modes and host-plant adaptations in the pea aphid, Acyrthosiphon pisum, a pest recently introduced into Chile. The pea aphid encompasses lineages differing in their reproductive mode, ranging from obligatory cyclical parthenogenesis to fully asexual reproduction. This species also shows variation in host use, with distinct biotypes specialized on different species of legumes as well as more polyphagous populations. In central Chile, microsatellite genotyping of pea aphids sampled on five crops and wild legumes revealed three main clonal genotypes, which showed striking associations with particular host plants rather than sampling locations. Phenotypic analyses confirmed their strong host specialization and demonstrated parthenogenesis as their sole reproductive mode. The genetic relatedness of these clonal genotypes with corresponding host-specialized populations from the Old World indicated that each clone descended from a particular Eurasian biotype, which involved at least three successful introduction events followed by spread on different crops. This study illustrates that multiple introductions of highly specialized clones, rather than local evolution in resource use and/or selection of generalist genotypes, can explain the demographic success of a strictly asexual invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号