首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosomal protein complex L8 of Escherichia coli consists of two dimers of protein L7/L12 and one monomer of protein L10. This pentameric complex and ribosomal protein L11 bind in mutually cooperative fashion to 23 S rRNA and protect specific fragments of the latter from digestion with ribonuclease T1. Oligonucleotides protected either by the L8 complex alone or by the complex plus protein L11 were isolated from such digests and shown to rebind specifically to these proteins. They were also subjected to nucleotide sequence analysis. The longest oligonucleotide, protected by the L8 complex alone, consisted of residues 1028-1124 of 23 S rRNA and included all the other RNA fragments produced in this study. Previously, protein L11 had been shown to protect residues 1052-1112 of 23 S rRNA. It is concluded that the binding sites for the L8 protein complex and for protein L11 are immediately adjacent within 23 S rRNA of E. coli.  相似文献   

2.
Site-directed mutagenesis has been used to change, specifically, residue 1067 within 23 S ribosomal RNA of Escherichia coli. This nucleoside (adenosine in the wild-type sequence) lies within the GTPase centre of the larger ribosomal subunit and is normally the target for the methylase enzyme responsible for resistance to the antibiotic thiostrepton. The performance of the altered ribosomes was not impaired in cell-free protein synthesis nor in GTP hydrolysis assays (although the 3 mutant strains grew somewhat more slowly than wild-type) but their responses to thiostrepton did vary. Thus, ribosomes containing the A to C or A to U substitution at residue 1067 of 23 S rRNA were highly resistant to the drug, whereas the A to G substitution resulted in much lesser impairment of thiostrepton binding and the ribosomes remained substantially sensitive to the antibiotic. These data reinforce the hypothesis that thiostrepton binds to 23 S rRNA at a site that includes residue A1067. They also exclude any possibility that the insensitivity of eukaryotic ribosomes to the drug might be due solely to the substitution of G at the equivalent position within eukaryotic rRNA.  相似文献   

3.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

4.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

5.
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.  相似文献   

6.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the ‘GTPase center’ of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximity assays designed to look at the binding of the L11 C-terminal RNA-binding domain to a 23S ribosomal RNA (rRNA) fragment, as well as the ability of thiostrepton to induce that binding, were used to demonstrate the role of Mg2+, L11 and thiostrepton in the formation and maintenance of the rRNA fragment tertiary structure. Experiments using these assays with both an Escherichia coli rRNA fragment and a thermostable variant of that RNA show that Mg2+, L11 and thiostrepton all induce the RNA to fold to an essentially identical tertiary structure.  相似文献   

7.
A comprehensive range of chemical reagents and ribonucleases was employed to investigate the interaction of the antibiotics thiostrepton and micrococcin with the ribosomal protein L11-23S RNA complex and with the 50S subunit. Both antibiotics block processes associated with the ribosomal A-site but differ in their effects on GTP hydrolysis, which is inhibited by thiostrepton and stimulated by micrococcin. The interaction sites of both drugs were shown to occur within the nucleotide sequences A1067-A1098 within the protein L11 binding site on 23S RNA. This region of the ribosome structure is involved in elongation factor-G-dependent GTP hydrolysis and in the stringent response. No effects of drug binding were detected elsewhere in the 23S RNA. In general, the two drugs afforded 23S RNA similar protection from the chemical and nuclease probes in accord with their similar modes of action. One important exception, however, occurred at nucleotide A1067 within a terminal loop where thiostrepton protected the N-1 position while micrococcin rendered it more reactive. This difference correlates with the opposite effects of the two antibiotics on GTPase activity.  相似文献   

8.
The 30 S ribosomal subunit assembles in vitro through the hierarchical binding of 21 ribosomal proteins to 16 S rRNA. The central domain of 16 S rRNA becomes the platform of the 30 S subunit upon binding of ribosomal proteins S6, S8, S11, S15, S18 and S21. The assembly of the platform is nucleated by binding of S15 to 16 S rRNA, followed by the cooperative binding of S6 and S18. The prior binding of S6 and S18 is required for binding of S11 and S21. We have studied the mechanism of the cooperative binding of S6 and S18 to the S15-rRNA complex by isothermal titration calorimetry and gel mobility shift assays with rRNA and proteins from the hyperthermophilic bacterium Aquifex aeolicus. S6 and S18 form a stable heterodimer in solution with an apparent dissociation constant of 8.7 nM at 40 degrees C. The S6:S18 heterodimer binds to the S15-rRNA complex with an equilibrium dissociation constant of 2.7 nM at 40 degrees C. Consistent with previous studies using rRNA and proteins from Escherichia coli, we observed no binding of S6 or S18 in the absence of the other protein or S15. The presence of S15 increases the affinity of S6:S18 for the RNA by at least four orders of magnitude. The kinetics of S6:S18 binding to the S15-rRNA complex are slow, with an apparent bimolecular rate constant of 8.0 x 10(4) M(-1) s(-1) and an apparent unimolecular dissociation rate of 1.6 x 10(-4) s(-1). These results, which are consistent with a model in which S6 and S18 bind as a heterodimer to the S15-rRNA complex, provide a mechanistic framework to describe the previously observed S15-mediated cooperative binding of S6 and S18 in the ordered assembly of a multi-protein ribonucleoprotein complex.  相似文献   

9.
10.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

11.
Ribosomal proteins are assumed to stabilize specific RNA structures and promote compact folding of the large rRNA. The conformational dynamics of the protein between the bound and unbound state play an important role in the binding process. We have studied those dynamical changes in detail for the highly conserved complex between the ribosomal protein L11 and the GTPase region of 23S rRNA. The RNA domain is compactly folded into a well defined tertiary structure, which is further stabilized by the association with the C-terminal domain of the L11 protein (L11ctd). In addition, the N-terminal domain of L11 (L11ntd) is implicated in the binding of the natural thiazole antibiotic thiostrepton, which disrupts the elongation factor function. We have studied the conformation of the ribosomal protein and its dynamics by NMR in the unbound state, the RNA bound state and in the ternary complex with the RNA and thiostrepton. Our data reveal a rearrangement of the L11ntd, placing it closer to the RNA after binding of thiostrepton, which may prevent binding of elongation factors. We propose a model for the ternary L11–RNA–thiostrepton complex that is additionally based on interaction data and conformational information of the L11 protein. The model is consistent with earlier findings and provides an explanation for the role of L11ntd in elongation factor binding.  相似文献   

12.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

13.
Gerstner RB  Pak Y  Draper DE 《Biochemistry》2001,40(24):7165-7173
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.  相似文献   

14.
Ribosomal protein L11 of Escherichia coli was bound to 23 S rRNA and the resultant complex was digested with ribonuclease T1. A single RNA fragment, protected by protein L11, was isolated from such digests and was shown to rebind specifically to protein L11. The nucleotide sequence of this RNA fragment was examined by two-dimensional fingerprinting of ribonuclease digests. It proved to be 61 residues long and the constituent oligonucleotides could be fitted perfectly between residues 1052 and 1112 of the nucleotide sequence of E. coli 23 S rRNA.  相似文献   

15.
Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for protein-rRNA binding. The assay relies on 2'-amino-butyryl-pyrene-uridine incorporated in a 58-nucleotide rRNA fragment, which gives approximately 15-fold enhancement when L11 or L11-C76 is bound. Although the pyrene tag weakens protein binding, unbiased protein-RNA association constants were obtained in competition experiments with untagged RNA. It was found that (i) intact B. stearothermophilus L11 binds rRNA with K approximately 1.2 x 10(9) m(-1) in buffers with 0.2 m KCl, about 100-fold tighter than Escherichia coli L11; (ii) the N-terminal domain makes a small, salt-dependent contribution to the overall L11-RNA binding affinity (approximately 8-fold enhancement at 0.2 m KCl), (iii) L11 stimulates thiostrepton binding by 2.3 +/- 0.6 x 10(3)-fold, predicting an overall thiostrepton affinity for the ribosome of approximately 10(9) m(-1), and (iv) the yeast homolog of L11 shows no stimulation of thiostrepton binding. The latter observation resolves the question of why eukaryotes are insensitive to the antibiotic. These measurements also show that it is plausible for thiostrepton to compete directly with EF-G.GDP for binding to the L11-RNA complex, and provide a quantitative basis for further studies of L11 function and thiostrepton mechanism.  相似文献   

16.
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.  相似文献   

17.
The translocation reaction catalyzed by elongation factor G (EF-G) is inhibited either by alpha-sarcin cleavage of 23S rRNA or by the binding of thiostrepton to the E. coli ribosome. Here we show that the transitory binding of EF-G and GDP to the ribosome inhibited the rate of alpha-sarcin cleavage and that stabilization of this binding with fusidic acid completely prevented alpha-sarcin cleavage. A similar pattern of inhibition was seen upon the binding of elongation factor 2 to the S. cerevisiae ribosome. The irreversible binding of the antibiotic thiostrepton to the E. coli ribosome, on the other hand, decreased the rate of cleavage by alpha-sarcin approximately 2-fold. These results suggest that the alpha-sarcin site is located within the ribosomal domain for EF-G binding and that the conformation of this site is affected by the binding of thiostrepton.  相似文献   

18.
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.  相似文献   

19.
20.
The binding of bivalent metal ions Cu2+, Zn2+, Ca2+, Mg2+ to low-density lipoproteins (LDL) was investigated by the ESR technique. The monitoring of ESR spectra of paramagnetic Mn2+ ions in the presence of above-listed cations made it possible to evaluate the dissociation constants of their complexes with LDL. The effective dissociation constant of the complex Mn(2+)-LDL used for calculations was KD = (1.1 +/- 0.4) x 10(-4) M according to literature data. The investigated cations may be classified into two groups: 1) low dissociation constants were characteristic for Cu2+ ions [KD = (1.3 +/- 0.5) x 10(-4) M], which demonstrated a high oxidative ability, and for Zn2+ [KD = (0.95 +/- 0.45) x 10(-4) M] and Mn2+ ions, which could strongly influence the copper-induced LDL oxidation; 2) Ca2+ and Mg2+ were characterized by higher values of KD [(6 +/- 1) x 10(-4) M and (7.5 +/- 1.5) x 10(-4) M, accordingly] and slightly affected the Cu(2+)-induced oxidation of LDL. The results of the present work reinforced our earlier conjecture that cations may influence the process of lipid peroxidation, binding only to particular binding sites on the surface of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号