首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I-SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I-SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species. As far as we know, this is the first report for transgenic mammals derived from I-SceI-mediated transgenesis via embryo cytoplasmic microinjection.  相似文献   

2.
The chicken embryo represents a suitable model for studying vertebrate sex determination and gonadal sex differentiation. While the basic mechanism of sex determination in birds is still unknown, gonadal morphogenesis is very similar to that in mammals, and most of the genes implicated in mammalian sex determination have avian homologues. However, in the chicken embryo, these genes show some interesting differences in structure or expression patterns to their mammalian counterparts, broadening our understanding of their functions. The novel candidate testis-determining gene in mammals, DMRT1, is also present in the chicken, and is expressed specifically in the embryonic gonads. In chicken embryos, DMRT1 is more highly expressed in the gonads and Müllerian ducts of male embryos than in those of females. Meanwhile, expression of the orphan nuclear receptor, Steroidogenic Factor 1 (SF1) is up-regulated during ovarian differentiation in the chicken embryo. This contrasts with the expression pattern of SF1 in mouse embryos, in which expression is down-regulated during female differentiation. Another orphan receptor initially implicated in mammalian sex determination, DAX1, is poorly conserved in the chicken. A chicken DAX1 homologue isolated from a urogenital ridge library lacked the unusual DNA-binding motif seen in mammals. Chicken DAX1 is autosomal, and is expressed in the embryonic gonads, showing somewhat higher expression in female compared to male gonads, as in mammals. However, expression is not down-regulated at the onset of testicular differentiation in chicken embryos, as occurs in mice. These comparative data shed light on vertebrate sex determination in general.  相似文献   

3.
A hypothesis has been advanced that logically combines “contradictory” facts concerning the early mammalian development and shows a natural relationship between the embryos developing from a fertilized ovum and from cells of the inner cell mass of blastocyst. When studying the theoretical questions of cloning, it is necessary to take into consideration the peculiarities of prenatal mammalian ontogeny, which make themselves evident upon comparison with other animals. The absence of yolk in the mammalian ovum defines sharp differences in the early development between mammals and other Amniota. The complete asynchronous cleavage results in the formation of morula followed by blastocyst, which hatches from zona pellucida and is implanted into the uterus tissue. This fact allows us to consider the blastocyst as a mammalian larva, which is fed owing to the maternal organism. It is known that, in the body of a larva (blastocyst), a new embryo develops from some somatic cells. This process is known as polyembryony, which is typical of the development of some parasitic insects. Polyembryony in turn is a variant of somatic embryogenesis, which is a form of asexual reproduction. Thus, the two different embryos, “conceptus” and “embryo proper,” have different origins: the first forms by the sexual way and the second, by the asexual way. Investigation of the mechanisms of somatic embryogenesis in mammals will help us to find conditions necessary for full reprogramming of donor somatic nuclei and provide for successful development of reconstructed embryos.  相似文献   

4.
Despite the great morphological diversity of early embryos, the underlying mechanisms of gastrulation are known to be broadly conserved in vertebrates. However, a number of genes characterized as fulfilling an essential function in this process in several model organisms display no clear ortholog in mammalian genomes. We have devised an in silico phylogenomic approach, based on exhaustive similarity searches in vertebrate genomes and subsequent bayesian phylogenetic analyses, to identify such missing genes, presumed to be highly divergent. This approach has been used to identify mammalian orthologs of Not, an homeodomain containing gene previously characterized in Xenopus, chick and zebrafish as playing a critical role in the formation of the notochord. This attempt led to the identification of a highly divergent mammalian Not-related gene in the mouse, human and rat. The results from phylogenetic reconstructions, synteny analyses, expression pattern analyses in wild-type and mutant mouse embryos, and overexpression experiments in Xenopus embryos converge to confirm these genes as representatives of the Not family in mammals. The identification of the mammalian Not gene delivers an important component for the understanding of the genetics underlying notochord formation in mammals and its evolution among vertebrates. The phylogenomic method used to retrieve this gene thus provides a tool, which can complement or validate genome annotations in situations when they are weakly supported.  相似文献   

5.
The fertilized mouse egg actively demethylates the paternal genome within a few hours after fertilization, whereas the maternal genome is only passively demethylated by a replication-dependent mechanism after the two-cell stage. This evolutionarily conserved assymetry in the early diploid mammalian embryo may have a role in methylation reprogramming of the two very different sets of sperm and egg chromatin for somatic development and formation of totipotent cells. Immunofluorescence staining with an antibody against 5-methylcytosine (MeC) showed that the incidence of abnormal methylation patterns differs between mouse two-cell embryos from superovulated females, nonsuperovulated matings, and in vitro fertilization (IVF). It also depends on embryo culture conditions and genetic background. In general, there was a good correlation with the number of embryos (from the same experiment) which did not develop in vitro up to the blastocyst stage. Thus, aberrant genome-wide DNA methylation in early embryos may be an important mechanism contributing to the high incidence of developmental failure in mammals. Similar to the situation in abnormally methylated embryos from nuclear transfer, it may cause a high incidence of pregnancy loss and abnormal phenotypes.  相似文献   

6.
7.
It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.  相似文献   

8.
V I Evsikov  L M Morozova 《Genetika》1978,14(7):1264-1271
The weights of embryos and their placentas obtained by blastocysts of CBA/LacY and DBA/2 mouse strains transfer in recipient females of BALB/c strain and also by blastocysts of BALB/c mouse strain transfer in recipient females of CBA/LacY strain were analysed on the 16th gestation day. It is shown that placental weights are determined by genotypic peculiarities of embryos, although comparative placental weights of different strain embryos could also depend on females fertility. The weight of allogenic embryos (developed from transferred blastocysts) significantly excessed the weight of singenic embryos, and most significant differences were noted in females with small number of embryos. The possibilities to solve some applied and fundamental problems of mammalian reproduction given by the method of interstrain and interbreed early stage embryos transfer are discussed.  相似文献   

9.
Ng K  Pullirsch D  Leeb M  Wutz A 《EMBO reports》2007,8(1):34-39
X inactivation is the mechanism by which mammals adjust the genetic imbalance that arises from the different numbers of gene-rich X-chromosomes between the sexes. The dosage difference between XX females and XY males is functionally equalized by silencing one of the two X chromosomes in females. This dosage-compensation mechanism seems to have arisen concurrently with early mammalian evolution and is based on the long functional Xist RNA, which is unique to placental mammals. It is likely that previously existing mechanisms for other cellular functions have been recruited and adapted for the evolution of X inactivation. Here, we critically review our understanding of dosage compensation in placental mammals and place these findings in the context of other cellular processes that intersect with mammalian dosage compensation.  相似文献   

10.
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes.  相似文献   

11.
Bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD), two proteinases encoded by Bmp1, provide procollagen C-proteinase (pCP) activity that converts procollagens I to III into the major fibrous components of mammalian extracellular matrix (ECM). Yet, although Bmp1(-/-) mice have aberrant collagen fibrils, they have residual pCP activity, indicative of genetic redundancy. Mammals possess two additional proteinases structurally similar to BMP-1 and mTLD: the genetically distinct mammalian Tolloid-like 1 (mTLL-1) and mTLL-2. Mice lacking the mTLL-1 gene Tll1 are embryonic lethal but have pCP activity levels similar to those of the wild type, suggesting that mTLL-1 might not be an in vivo pCP. In vitro studies have shown BMP-1 and mTLL-1 capable of cleaving Chordin, an extracellular antagonist of BMP signaling, suggesting that these proteases might also serve to modulate BMP signaling and to coordinate the latter with ECM formation. However, in vivo evidence of roles for BMP-1 and mTLL-1 in BMP signaling in mammals is lacking. To remove functional redundancy obscuring the in vivo functions of BMP-1-related proteases in mammals, we here characterize Bmp1 Tll1 doubly null mouse embryos. Although these appear morphologically indistinguishable from Tll1(-/-) embryos, biochemical analysis of cells derived from doubly null embryos shows functional redundancy removed to an extent enabling us to demonstrate that (i) products of Bmp1 and Tll1 are responsible for in vivo cleavage of Chordin in mammals and (ii) mTLL-1 is an in vivo pCP that provides residual activity observed in Bmp1(-/-) embryos. Removal of functional redundancy also enabled use of Bmp1(-/-) Tll1(-/-) cells in a proteomics approach for identifying novel substrates of Bmp1 and Tll1 products.  相似文献   

12.
Experiments in which avian embryos are treated with sex steroidsor steroid antagonists suggest that sexual differentiation ofreproductive behavior (and thus differentiation of the brainmechanisms for such behavior) is controlled by steroids producedby the embryonic gonads. In chickens and Japanese quail, maleshatched from eggs treated with estradiol or testosterone duringincubation are feminized (demasculinized); they fail to exhibitmasculine sexual behavior as adults, and no longer are behaviorallydistinguishable from females. Some evidence suggests that testosteronemay mimic the feminizing action of estradiol by being convertedto an estrogen in the embryonic brain. Genetic female quailexposed to an antiestrogen during embryonic development aremasculinized; they exhibit an increased ability to display themasculine copulatory pattern. Thus the behavior of these speciesis feminized by embryonic exposure to sex steroids, the anhormonal(neutral) sex for behavioral differentiation appears to be themale, and females appear to result from estrogen produced bythe embryonic ovaries. In contrast, sex steroid treatment ofmammals early in development masculinizes behavior, the femaleis the neutral sex, and males result from fetal androgen secretion.These opposite patterns of psychosexual differentiation in birdsand mammals are correlated with a major difference between theavian and mammalian sex-determining mechanism. Implicationsfor other vertebrates are discussed.  相似文献   

13.
Fukusumi S  Fujii R  Hinuma S 《Peptides》2006,27(5):1073-1086
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.  相似文献   

14.
Noncovalent protein delivery into cells via peptide carriers is an emerging concept. Only a handful of such peptides are known. To address various limitations associated with protein delivery for therapeutic purposes, a greater number of different delivery peptides would be required. No general method exists for creating such peptides. By combining a sequence of 16 lysine residues (K16) with the signal peptide (SP) sequence of Kaposi's fibroblast growth factor (K-FGF), we have synthesized a peptide (K16SP) that efficiently and noncovalently delivers functionally intact proteins (immunoglobulin G molecules, beta-galactosidase, and green fluorescent protein) into mammalian cells. The peptides K16 and SP each alone did not show any noncovalent protein-carrying capacity. K16SP appears to be nontoxic to cells and three to four times more efficient than a commercially available peptide reagent. Our approach offers proof-of-concept of a general strategy for creating a diverse array of peptide carriers for eventual therapeutic applications.  相似文献   

15.
Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. Parental specific epigenetic modifications are imprinted on a subset of genes in the mammalian genome during germ cell maturation. Imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure. All such epigenetic modifications are potentially reversible and can be erased. After the erasure step, new parental imprints are initiated, resulting in reintroduction of sex-specific imprints in the male and female germ line. Although the function of genomic imprinting is not clear, it has been proposed that it evolved in mammals to regulate intrauterine growth and mammalian development. If the epigenotype of individual gametes is directly correlated with their later developmental capacities, genomic imprinting would have important practical implications in reproductive medicine for the use of embryos derived from assisted reproduction.  相似文献   

16.
Evolution of glucagon genes   总被引:1,自引:0,他引:1  
Statistical analyses of DNA sequences of the preproglucagon genes from bovine, human, hamster, and anglerfish suggest that a gene duplication creating two anglerfish genes (AF I and II) occurred about 160 Myr ago, long after the separation of fish and mammals. The analyses further suggest that the internal duplication producing the glucagon and glucagon-like peptide II (GLP-II) regions occurred about 1.2 billion years ago, which would indicate that the GLP-II region was present in the ancestral anglerfish sequence but was silenced or deleted before the gene duplication separating AF I and II. The glucagon-like peptide I (GLP-I) was derived from a duplication of the ancestral glucagon region about 800 Myr ago. The rate of synonymous substitution in these genes is approximately 4.3 x 10(-9) substitutions per year per synonymous site. The rate of nonsynonymous substitution in the signal peptide region is about 1.1 x 10(-9) substitutions per year per nonsynonymous site, a high rate comparable to that in the C-peptide region of preproinsulin. The rate of nonsynonymous substitution in the glicentin-related pancreatic polypeptide (GRPP) region is 0.63 x 10(-9) for the comparisons between mammalian species and 1.8 x 10(-9) for the comparisons between fish and mammals; the moderate rate in mammals suggests a physiological role for GRPP. The glucagon region is extremely conservative; no nonsynonymous substitution is observed in the mammalian genes, and a nonsynonymous rate of 0.18 x 10(-9) was obtained from the comparisons between fish and mammals. In the GLP-I region, the rate of nonsynonymous substitution was estimated to be 0.08 x 10(-9) for the comparisons between mammalian species and 0.30 x 10(- 9) for the comparisons between fish and mammals. In the GLP-II region, the rate was estimated to be 0.25 x 10(-9) for the comparisons between mammalian species. Thus, GLP-I and II are also very conservative, which suggests an important physiological role for these peptides.   相似文献   

17.
The scope of experimental approaches applicable to the study of mammalian eggs and embryos has advanced in recent years to provide unprecedented opportunities for understanding mammalian embryology. Amongst these significant advances has been the ability to alter the genetic constitution of eggs by pronuclear and nuclear transplantation as well as by the introduction of specific cloned genes into eggs and embryos. These techniques can be used in conjunction with the experimental reconstruction of preimplantation embryos to investigate more precisely a number of aspects of mammalian embryology. Recently, a most intriguing aspect of development has been uncovered, one that is apparently unique to mammals; experiments have revealed that the parental genomes are not functionally equivalent during embryogenesis. Hence, the parental origin of chromosomes determines their influence during embryogenesis. The mechanistic aspects responsible for the germ line modifications of homologous chromosomes, their role during development, and the wide-ranging implications of these findings for mammalian development have yet to be fully defined. An understanding of this process will provide the basis for developing genetic and reproductive strategies that can be applied to domestic animals and to humans.  相似文献   

18.
The molecular evolution of all available avian growth hormone (GH) gene sequences was investigated using both maximum-likelihood and parsimony methods, and the patterns compared to those found in mammals. In contrast to the rapid bursts of evolution observed for mammalian GH, the evolutionary rate of the avian GH mature peptide appears to have been more constant. However several positively selected sites were identified at functionally important positions in the avian signal peptide by the site-specific likelihood method. This implies that sequence variation in the avian GH signal peptide may be adaptive, although more conservative parsimony methods failed to confirm this. Nevertheless, the differing patterns of avian and mammalian GH signal peptide molecular evolution are consistent with the apparently differing roles of GH in controlling growth in these taxonomic groups and support the hypothesis that signal peptide sequence variation may in fact be the basis for increased functional complexity.  相似文献   

19.
The production of transgenic swine for xenotransplantation has been proposed as an optimal option to overcome the chronic shortage of human organ donors.Generation of genetically engineered swine has been elusive due to the difficulties in gene transfer.In order to achieve effective gene delivery,a key step for the genetic modification,we applied electronic pulse delivery (EPD) technology to introduce H2K^b-DC DNA construct into swine eggs.Using the developed EPD Protocols^TM,we have achieved good viability of the EPD treated oocytes,satisfactory embryonic development of the EPD treated embryos,and stable DNA transfer into the swine embryos with high efficiency.Thus,application of the EPD technology promises to effectively facilitate the generation of large trangenic mammals.  相似文献   

20.
Morpholino antisense oligonucleotides act by blocking translation of their target gene products and are effective tools for down-regulating gene expression. The current study was conducted to define treatment conditions for the use of morpholino oligonucleotides (MOs) in mammalian preimplantation embryos, and to employ MOs to target genes and study gene function in the early embryo. For the first time, ethoxylated polyethylenimine (EPEI), Lipofectin or Lysolecithin delivery agents were employed in combination with a fluorescent control MO and an alpha-catenin specific MO, to down-regulate gene expression during murine preimplantation development. Experiments applied to both two- and eight-cell stage murine preimplantation embryos contrasted the efficacy of MO concentrations of 1, 2, 5, 10, and 20 microM and treatment delivery times of 3, 6, 24, and 48 hr. Continuous treatment of two-cell embryos with Lipofectin and 20 microM alpha-catenin MO for 48 hr resulted in a significant (P < 0.05) reduction in development to the blastocyst stage and was accompanied by a marked reduction in alpha-catenin protein. These results indicate that morpholino antisense oligonucleotides are effective tools for down-regulating gene expression during mammalian preimplantation development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号