首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of the redox reactions of cytochromes b5 and P-450 in the presence of NADPH and NADH has been studied. It has been shown that different factors: dimethylaniline, ferric pyrophosphate, carbon monoxide, and an increase in the ionic strength of the medium produce a similar effect on the rate of the redox reactions of cytochromes b5 and P-450 reduced by NADPH. With NADH used as substrate, aerobic redox behavior of cytochrome b5 was quite different. The data obtained gave grounds to suggest a scheme of electron transfer in the NADPH oxidation chain according to which one of the cytochrome b5 subfractions (about 25% of the total pool of cytochrome b5) functions between flavoprotein and cytochrome P-450.  相似文献   

2.
In cell-free extracts of Pseudomonas ovalis nicotinic acid oxidase is confined to the wallmembrane fraction. It is associated with an electron-transport chain comprising b- and c-type cytochromes only, differing proportions of which are reduced by nicotinate and NADH. CO difference-spectra show two CO-binding pigments, cytochrome o (absorption maximum at 417nm) and another component absorbing maximally at 425nm. Cytochrome o is not reduced by NADH or by succinate but is by nicotinate, which can also reduce the ;425' CO-binding pigment. The effects of inhibitors of terminal oxidation support the idea of two terminal oxidases and a scheme involving the ;425' CO-binding pigment and the other components of the electron-transport chain is proposed.  相似文献   

3.
Irmelin Probst  Hans G. Schlegel 《BBA》1976,440(2):412-428
1. Cells of the hydrogen bacterium Alcaligenes eutrophus are broken by gentle lysis using lysozyme treatment in hypertonic sucrose followed by osmotic shock. By this method, 93% of the in vivo activity of the H2 oxidase is recovered and the ATPase remains particle bound. In contrast, cell disruption in a French pressure cell diminishes the in vivo activity of the H2 oxidase by 50% and solubilizes the bulk of the ATPase.2. The bacterium contains a periplasmic cytochrome c with bands at 418, 521 and 550 nm (difference spectrum). In addition to cytochrome aa3, b-560, c-553 and o, low temperature difference spectra of membranes show the presence of two further cytochromes (shoulders at 551 and 553 nm).3. The unsupplemented membrane fraction catalyses the oxidation of hydrogen, NADH, NADPH, succinate, formate and endogenous substrate (NAD linked) at rates 2–3-fold higher than membranes obtained from cells disrupted in a French pressure cell. With the exception of the H2 oxidase all oxidase activities in lysozyme membranes are sensitive to carbonylcyanide m-chlorophenylhydrazone (20–100% stimulation of oxygen uptake).4. The cytoplasmic fraction contains a B-type cytochrome with absorption maxima at 436 and 560 nm, capable of combining with CO; it contains non-covalently bound protohaem. In alkaline solutions a spectral transition to the haemochrome type with bands at 423, 526 and 556 nm occurs. The addition of NADH to an aerobic suspension of this cytochrome elicits new absorption maxima at 418, 545 and 577 nm (difference spectrum), which are believed to represent an oxygenated form of the reduced cytochrome.  相似文献   

4.
Storey BT 《Plant physiology》1970,46(4):625-630
Addition of 90 micromolar reduced nicotinamide adenine dinucleotide (NADH) in the presence of cyanide to a suspension of aerobic mung bean (Phaseolus aureus) mitochondria depleted with ADP and uncoupler gives a cycle of reduction of electron transport carriers followed by reoxidation, as NADH is oxidized to NAD+ through the cyanide-insensitive, alternate oxidase by excess oxygen in the reaction medium. Under these conditions, cytochrome b553 and the nonfluorescent, high potential flavoprotein Fpha of the plant respiratory chain become completely reduced with half-times of 2.5 to 2.8 seconds for both components. Reoxidation of flavoprotein Fpha on exhaustion of NADH is more rapid than that of cytochrome b553. There is a lag of 1.5 seconds after NADH addition before any reduction of ubiquinone can be observed, whereas there is no lag perceptible in the reduction of flavoprotein Fpha and cytochrome b553. The half-time for ubiquinone reduction is 4.5 seconds, and the extent of reduction is 90% or greater. About 30% of cytochrome b557 is reduced under these conditions with a half-time of 10 seconds; both cytochrome b562 and the fluorescent, high potential flavoprotein Fphf show little, if any, reduction. The two cytochromes c in these mitochondria, c547 and c549, are reduced in synchrony with a half-time of 0.8 second. These two components are already 60% reduced in the presence of cyanide but absence of substrate, and they become completely reduced on addition of NADH. These results indicated that reducing equivalents enter the respiratory chain from exogenous NADH at flavoprotein Fpha and are rapidly transported through cytochrome b553 to the cytochromes c; once the latter are completely reduced, reduction of ubiquinone begins. Ubiquinone appears to act as a storage pool for reducing equivalents entering the respiratory chain on the substrate side of coupling site 2. It is suggested that flavoprotein Fpha and cytochrome b553 together may act as the branching point in the plant respiratory chain from which forward electron transport can take place to oxygen through the cytochrome chain via cytochrome oxidase, or to oxygen through the alternate, cyanide-insensitive oxidase via the fluorescent, high potential flavoprotein Fphf.  相似文献   

5.
Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli   总被引:15,自引:0,他引:15  
The kinetics of inhibition by KCN of NADH oxidation in respiratory particles from Escherichia coli could be related to the relative amounts of cytochromes d and o which were present. Particles which contained higher levels of cytochrome d relative to cytochrome o were less sensitive to inhibition by cyanide. When cyanide reacted with the respiratory particles, the absorption bands of reduced cytochrome d at 442 and 628 nm in the reduced plus cyanide minus reduced difference spectrum were eliminated, as also were the bands at 423, 428, and 555 nm of b- and/or c-type cytochromes.Cyanide appeared to react with the oxidized form of cytochrome d to eliminate its α-band absorption with a second-order rate constant of 0.011 m?1 sec?1 for the rate of formation of cyanocytochrome d in the absence of added substrate. Under turnover conditions using NADH as substrate, the rate constant was 0.58 m?1 sec?1. This value is close to that determined from cyanide inhibition of NADH oxidase activity. The magnitude of the second-order rate constant for the formation of cyanocytochrome d was directly related to the rate of electron flux through cytochrome d. It is suggested that an intermediate species formed during the normal oxidation-reduction cycle of cytochrome d reacts with cyanide.  相似文献   

6.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3.  相似文献   

7.
The enzymatic activities and the cytochrome components of the respiratory chain were investigated with membrane fractions from chemoheterotrophically grown Rhodopseudomonas palustris. Whereas the level of electron transfer carriers was not distinctly affected by a change of the culture conditions, the potential activities of the enzymes were clearly increased when the cells were grown aerobically. Reduced-minus oxidized difference spectra of the membrane fractions prepared from dark aerobically grown cells revealed the presence of three b-type cytochromes b 561, b 560 and b 558, and at least two c-type cytochromes c 556 and c 2 as electron carriers in the electron transfer chain. Cytochrome of a-type could not be detected in these membranes. Reduced plus CO minus reduced difference spectra of the membrane fractions were indicative of cytochrome o, which may be equivalent to cytochrome b 560, appearing in substrate-reduced minus oxidized difference spectra. Cytochrome o was found to be the functional terminal oxidase. CO difference spectra of the high speed supernatant fraction indicated the presence of cytochrome c′. Succinate and NADH reduced the same types of cytochromes. However, a considerable amount of cytochrome b 561 with associated β and γ bands at 531 and 429 nm, respectively, was reducible by succinate, but not by NADH. A substantial fraction of the membrane-bound b-type cytochrome was non-substrate reducible and was found in dithionite-reduced minus substrate-reduced spectra. Cytochrome c 2 may be localized in a branch of the electron transport system, with the branch-point at the level of ubiquinone. The separate pathways rejoined at a common terminal oxidase. Two terminal oxidases with different KCN sensitivity were present in the respiratory chain, one of which was sensitive to low concentrations of KCN and was connected with the cytochrome chain. The other terminal oxidase which was inhibited only by high concentrations of cyanide was located in a branched pathway, through which the electrons could flow from ubiquinone to oxygen bypassing the cytochrome chain.  相似文献   

8.
1. Mitochondria isolated from Polytomella caeca contain cytochromes b, c+c1 and a+a3 and several flavoprotein species. 2. Electron transport is inhibited by antimycin A, rotenone, piericidin A and cyanide. 3. Spectral data indicate that antimycin A inhibits the reoxidation of reduced cytochrome b. 4. Various types of flavoprotein are characterized by simultaneous spectrophotometric and fluorimetric measurements on antimycin A-inhibited preparations and also by their absorption and fluorescence-emission spectra. 5. The rotenone-sensitive site lies between the two flavoproteins of the respiratory chain, designated FpD1 and FpD2. 6. Other flavoprotein species detected include those involved in the oxidation of succinate and externally added NADH; a large proportion of mitochondrial flavine is reduced by dithionite but not by known respiratory substrates. 7. The kinetics of flavoprotein and cytochrome reactions were studied.  相似文献   

9.
1. The electron-transport mechanism was examined in the ;particulate' and ;supernatant' fractions of disintegrated cells of a Park-Williams strain of Corynebacterium diphtheriae. 2. Succinate-oxidase activity was found mainly in the ;particulate' fraction, and NADH(2) oxidase mainly in the ;supernatant', which was devoid of cytochromes and menaquinone. 3. The sum of the activities of particles and supernatant fractions, with respect to both succinate oxidase and NADH(2) oxidase, was substantially less than that of the crude cell extract from which they were obtained. Full activity was restored on recombining ;particles' and ;supernatant'. The characteristics of this reassembled system were investigated. 4. The strain of organism (CN2000) examined contained cytochromes corresponding spectroscopically to ;a', ;b' and ;c' types. All three were reduced by succinate, lactate or NADH(2); but a portion of the cytochrome b, susceptible to reduction by dithionite, could not be reduced by the substrates. 5. Triton X-100 inhibits oxidation of succinate by particulate fraction; on adding succinate, the reduction of cytochrome b is not affected but that of cytochromes a and c is delayed. 6. Irradiation at 360mmu completely destroys menaquinone in the particle fraction. Succinate oxidation is severely decreased; succinate dehydrogenase and NADH(2) oxidation are little affected. Certain menaquinones will restore succinate oxidation in the irradiated material. 7. On adding succinate to irradiated particulate material cytochrome b is partially reduced at once, but reduction of cytochromes a and c is much delayed. A portion of the cytochrome b remains not reduced, but reduction occurs rapidly on the addition of menaquinone (MK-2).  相似文献   

10.
1. Resonance Raman spectra excited by laser photons in resonance with the α and β electronic transitions of the reduced forms of cytochrome b5 and c were recorded and used as model systems to distinguish the “b”- and “c”-type Cytochromes of succinate-cytochrome c reductase. 2. The scattering intensity of a particular cytochrome depends on the proximity of the laser excitation to the electronic transition which is involved in the resonance enhancement; thus, exciting at different wavelengths provides a method of selectively investigating one hemoprotein in a mixture of several. 3. The spectra of the reduced succinate-cytochrome c reductase excited at 514.5-nm laser light were due to both c- and b-type Cytochromes in agreement with the position of their respective electronic absorption bands. Spectra excited at 568.2 nm were due mostly to b-type cytochromes because of the proximity of the excitation wavelength to the position of their α absorption bands. 4. The identification of the individual cytochromes is aided by the set of characteristic vibrational bands recorded at each excitation wavelength. 5. A possible explanation of the differences in number of bands and frequency of normal modes, involving the strong interaction between the vinyl side groups and porphyrin ring, is suggested. 6. Comparison of spectra of purified cytochrome b5 with the b cytochromes of the reductase preparations shows vibrational bands of protoheme in different hemeproteins which are sensitive to the particular protein environment.  相似文献   

11.
F. Moreau  J.-L. Jacob  J. Dupont  C. Lance 《BBA》1975,396(1):116-124
1. An antimycin-insensitive NADH-cytochromec oxidoreductase (E.C. 1.6.99.3) activity can be demonstrated in the membrane of lutoids isolated from the latex ofHevea brasiliensis. This electron transport system can also use ferricyanide as an electron acceptor, but is unable to oxidize NADPH.2. Twob-type cytochromes are present in the membranes. Cytochromeb563 is partially reduced by NADH and ascorbate, but is not reducible by NADPH. It shows a double peak at 555 and 561 nm at 77 °K. A second cytochrome, cytochromeb561, seems to be reducible by hydrosulfite only.3. In the reduced state, these cytochromes do not combine with CO. The occurrence of cytochromeP-450 could not be demonstrated.4. The role of the NADH oxidation system is considered in relation to the biosynthesis of polyisoprene compounds in the latex.  相似文献   

12.
Oxidized particles ofA. vinelandii show high-spin ferric signals with an axial and a rhombically distorted component with g-values at 5.94 and 6.24, 5.51, respectively. The signals behave similarly on variation of temperature and/or power and are, assigned to cytochromed. The addition of ligands such as cyanide and carbon monoxide to oxidized particles mainly affects the rhombic component of the signal in the g=6 region. Prolonged, incubation of cyanide with oxidized particles results in the appearance of two new low-spin ferric heme signals at g=2.99 and at g=3.23 which are tentatively assigned to low-spin forms of cyanide-liganded cytochromed. With computer signal-averaging of the EPR spectrum of oxidized particles, the presence of resonances in the g=3–4 region could be demonstrated. These resonances are assigned to cytochromeb 1 (g-values at 3.68, 3.43),c-type cytochromes (g-values at 3.43, 3.25) and cytochromea 1, and possibly a low-spin form of ac-type cytochrome (g-value at 3.03). These EPR results represent, to our knowledge, the only such studies reported on the membrane-boundb 1 andc-type cytochromes of a bacterial respiratory-linked phosphorylating electron-transport chain.  相似文献   

13.
A potent inhibitor of microsomal mixed-function oxidation reactions in insects had previously been isolated and partially purified from the gut contents of Prodenia eridania and shown to be associated with proteinase activity. Incubation of rat liver microsomal fraction with low concentrations of this inhibitor led to solubilization of NADPH–cytochrome c reductase, which was paralleled by the inactivation of reduction of cytochrome P-450 by NADPH and by the inhibition of NADPH-linked benzo[3,4]pyrene hydroxylation and aminopyrine demethylation. There was little or no effect on cytochromes b5 and P-450, nor was the capacity of the latter catalyst to combine with exogenous substrates decreased. Contrary to the findings with NADPH, preincubation of microsomal fraction with the inhibitor did not cause a significant decrease in the rate of cytochrome P-450 reduction by NADH, supporting the assumption that different catalysts are involved in the electron transfer from NADH and NADPH to cytochrome P-450. The findings indicate the importance of taking the possible presence of endogenous inhibitors into consideration when evaluating low or absent mixed-function oxidation activities found in insect systems in vitro.  相似文献   

14.
Günter A. Peschek 《BBA》1981,635(3):470-475
The cytochrome content of membrane fragments prepared from the bluegreen alga (cyanobacterium) Anacystis nidulans was examined by difference spectrophotometry. Two b-type cytochromes and a hitherto unknown cytochrome a could be characterized. In the reduced-minus-oxidised difference spectra the a-type cytochrome showed an α-band at 605 nm and a γ-band at 445 nm. These bands shifted to 590 and 430 nm, respectively, in CO difference spectra. NADPH, NADH and ascorbate reduced the cytochrome through added horse heart cytochrome c as electron mediator. In presence of KCN the reduced-minus-oxidised spectrum showed a peak at 600 nm and a trough at 604 nm. Photoaction spectra of O2 uptake and of horse heart cytochrome c oxidation by CO-inhibited membranes showed peaks at 590 and 430 nm. These findings are consistent with cytochrome aa3 being the predominant respiratory cytochrome c oxidase in Anacystis nidulans.  相似文献   

15.
16.
Isolated and purified cytochrome c oxidase from beef heart muscle mitochondria (Kuboyama et al. (1972) J. Biol. Chem.247, 6375–6383) is shown to be very similar to the hemoprotein in situ with respect to its EPR absorption properties and the half-reduction potentials of the hemes and copper. The half-reduction potentials of cytochromes a and a3 in the purified cytochrome c oxidase are 205 mV and 360 mV, respectively, and these values are the same in the presence and absence of cytochrome c.Low-temperature EPR spectra show that the binding of CO to reduced cytochrome a3 changes the oxidized cytochrome a from high spin (g 6) to low spin (g 3). In samples at 5–8 °K the photodissociation of the reduced cytochrome a3CO compound shifts the spectrum of the oxidized low-spin cytochrome a to a lower g value and converts approximately 5% of the low-spin form to a high-spin form. The heme-heme interaction demonstrated in this reaction is very fast as evidenced by the fact that even at 5 °K the measured change in oxidized cytochrome is complete within 5 msec.  相似文献   

17.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

18.
Intracellular localization of several enzymes related to tricarboxylic acid cycle was investigated during the aerobic growth of Candida tropicalis on acetate, n-alkane and glucose. NADP-linked isocitrate dehydrogenase in acetate-grown cells was mostly found in S2 fraction (20,000 × g supernatant fraction of protoplast lysate), whereas more than half of this activity in n-alkane-grown cells was recovered in P2 fraction (20,000 × g pellet fraction). Large parts of NAD-linked isocitrate dehydrogenase and malate dehydrogenase were present in P2 fraction, while NADP- and NAD-linked glutamate dehydrogenases were found preferentially in S2 fraction, irrespective of the growth substrates used. Isocitrate lyase was detected in both fractions. Citrate synthase and aconitase in acetate-grown cells were almost particulate. Catalase activity recovered in P2 fraction was far higher in alkane-grown cells than in acetate- or glucose-grown cells.  相似文献   

19.
-Glucosidase activity has been determined in homogenate and in centrifugation fractions of 7-day-old and adult rat brain; maximum activity was found at pH 4 and pH 5. Of the adult brain, more than 50% of the activity was concentrated in the 800-g sediment fraction (P1), while in the brain of 7-day-old rat about 20% was found in the corresponding fraction. The activity maximum in all fractions after a 2% Triton X-100 treatment occurs at pH 5. Addition of Triton to adult brain homogenate enhances the activity, but this stimulation is less than the sum of the activities observed at pH 4 and pH 5 in the absence of Triton. Triton addition to brain homogenate of 7-day-old rat results in a fall in activity at pH 4 and in a maximum at pH 5. In rat brain homogenate subjected to sonication, a loss of activity is observed at pH 4, scarcely at pH 5; the activity loss is completely abolished and turned into an increase under the influence of Triton. This increase equals the level obtained when Triton is added to an untreated brain homogenate. Sonication of rat brain homogenate leads to changes in the distribution pattern; about 25% of the activity of the adult brain is found in the P1 fraction compared to 50% in the corresponding fraction of the untreated brain. Fractionation of a sonicated brain homogenate from adult rat reveals that at pH 4 most activity (52%) is concentrated in the 20,000-g pellet (P2), 23% in supernatant fluid (S2); at pH 5 the opposite is observed: most activity (49%) is found in the 20,000-g supernatant (S2) and 23% in the 20,000-g pellet (P2). In the presence of Triton the activity of the sonicated brain homogenate of adult rat increases; this stimulation roughly equals the sum of the corresponding activities measured at pH 4 and pH 5 in the absence of Triton.  相似文献   

20.
D.L. Knook  J.Van&#x;t Riet  R.J. Planta 《BBA》1973,292(1):237-245
1. The participation of cytochromes in the membrane-bound, nitrate and oxygen respiratory systems of Klebsiella (Aerobacter) aerogenes has been investigated. The membrane preparations contained the NADH, succinate, lactate and formate oxidase systems, and in addition a high respiratory nitrate reductase activity.2. Difference spectra indicated the presence of cytochromes b, a1, d, and o. Cytochromes of the c-type could not be detected in these membranes. Both cytochrome b content and respiratory nitrate reductase activity were the highest in bacteria grown anaerobically in the presence of nitrate.3. Cytochrome b was the only cytochrome which, after being reduced by NADH, could be partially reoxidized anaerobically in the presence of nitrate. Furthermore, nitrate caused a lower aerobic steady state reduction only of cytochrome b.4. NADH oxidase and NADH-linked respiratory nitrate reductase activities were both inhibited by antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide and KCN. NADH oxidase activity was selectively inhibited by CO, while azide was found to inhibit only the respiratory nitrate reductase. In the presence of azide, nitrate did not affect the level of reduction of cytochrome b.5. The evidence presented suggests that cytochrome b is a carrier in the electron transport systems to both nitrate and oxygen; from cytochrome b branching occurs, with one branch linked to the respiratory nitrate reductase and one branch linked to oxidase systems, containing the cytochromes a1, d and o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号