首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Abstract

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Immunotherapy has been suggested as a compelling alternative approach for conventional breast cancer treatment methods. Despite the paramount rolesof T cells in this approach, insufficient numbers of them in the combat against progressive tumor growth still remain to be dealt with. Super antigens are a class of antigens, capable of eliciting T cell proliferation response against desired antigens. Staphylococcal enterotoxin B (SEB) is categorized as a super antigen, its anti-tumor properties has been previously reported. However, to the best our knowledge, SEB has not been ever administered as a DNA construct. In the present study, we exploited bioinformatics tools to assess the immunoreactivity of a SEB-coding DNA construct that serves as a DNA vaccine for breast cancer therapy. Potential B and T (MHC class I and II binders) cell epitopes of the hypothetically expressed protein, along with its sub cellular localization were predicted. Moreover, probable glycosylation and phosphorylation sites within the protein sequence were determined. The gene sequence was optimized according to murine model codon bias and its mRNA stability was analyzed. Employing an integrative in silico approach, we revealed that apparently the construct could be efficiently expressed in mouse model. Moreover, the hypothetically expressed protein could act as an amenable adjuvant in cancer immunotherapy.  相似文献   

3.

Leishmaniasis is caused by an obligate intracellular protozoan parasite. The clinical forms of leishmaniasis differ from cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral leishmaniasis (VL) which depend on the parasite species and the host’s immune responses. There are significant challenges to the available anti-leishmanial drug therapy, particularly in severe forms of disease, and the rise of drug resistance has made it more difficult. Currently, no licensed vaccines have been introduced to the market for the control and elimination of VL. A potential target for use in candidate vaccines against leishmaniasis has been shown to be leishmania Kinetoplastid membrane protein-11 (KMP-11) antigen. In this study, we chose KMP-11 antigen as target antigen in our vaccine construct. In addition, B-type flagellin (fliC) was used as an adjuvant for enhancing vaccine immunogenicity. The GSGSGSGSGSG linker was applied to link the KMP-11 antigen and fliC (KMP-11-fliC) to construct our fusion protein. Bioinformatics approaches such as; 3D homology modeling, CTL, B-cell, MHC class I and II epitopes prediction, allergenicity, antigenicity evaluations, molecular docking, fast simulations of flexibility of docked complex and in silico cloning were employed to analysis and evaluation of various properties of the designed fusion construct. Computational results showed that our engineered structure has the potential for proper stimulation of cellular and humoral immune responses against VL. Consequently, it could be proposed as a candidate vaccine against VL according to these data and after verifying the efficacy of the candidate vaccine through in vivo and in vitro immunological tests.

  相似文献   

4.
5.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2+ tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369–377, 435–443 and 689–697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4+ T cells and antibodies are important components. S. Vertuani and C. Triulzi contributed equally to this work.  相似文献   

6.
Recent years have seen a surge in interest in cell-penetrating peptides (CPP) as an efficient means for delivering therapeutic targets into cellular compartments. The cell membrane is impermeable to hydrophilic substances yet linking to CPP can facilitate delivery into cells. Thus the unique translocatory property of CPP ensures they remain an attractive carrier, with the capacity to deliver cargoes in an efficient manner having applications in drug delivery, gene transfer and DNA vaccination. Fundamental for an effective vaccine is the delivery of antigen epitopes to antigen-presenting cells, ensuing processing and presentation and induction of an immune response. Vaccination with proteins or synthetic peptides incorporating CTL epitopes have proven limited due to the failure for exogenous antigens to be presented efficiently to T cells. Linking of antigens to CPP overcomes such obstacles by facilitating cellular uptake, processing and presentation of exogenous antigen for the induction of potent immune responses. This review will encompass the various strategies for the delivery of whole proteins, T cell epitopes and preclinical studies utilizing CPP for cancer vaccines.  相似文献   

7.
Since the outbreak of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) in December 2019 in China, there has been an upsurge in the number of deaths and infected individuals throughout the world, thereby leading to the World Health Organization declaration of a pandemic. Since no specific therapy is currently available for the same, the present study was aimed to explore the SARS‐CoV‐2 genome for the identification of immunogenic regions using immunoinformatics approach. A series of computational tools were applied in a systematic way to identify the epitopes that could be utilized in vaccine development. The screened‐out epitopes were passed through several immune filters, such as promiscuousity, conservancy, antigenicity, nonallergenicity, population coverage, nonhomologous to human proteins, and affinity with human leukocyte antigen alleles, to screen out the best possible ones. Further, a construct comprising 11 CD4, 12 CD8, 3 B cell, and 3 interferon‐γ epitopes, along with an adjuvant β‐defensin, was designed in silico, resulting in the formation of a multiepitope vaccine. The in silico immune simulation and population coverage analysis of the vaccine sequence showed its capacity to elicit cellular, humoral, and innate immune cells and to cover up a worldwide population of more than 97%. Further, the interaction analysis of the vaccine construct with Toll‐like receptor 3 (immune receptor) was carried out by docking and dynamics simulations, revealing high affinity, constancy, and pliability between the two. The overall findings suggest that the vaccine may be highly effective, and is therefore required to be tested in the lab settings to evaluate its efficacy.  相似文献   

8.
Human T-lymphotropic virus (HTLV), the first human retrovirus has been discovered which is known to cause the age-old assassinating disease HTLV-1 associated myelopathy. Cancer caused by this virus is adult T cell leukemia/lymphoma which targets 10–20 million throughout the world. The effect of this virus extends to the fact that it causes chronic disease to the spinal cord resulting in loss of sensation and further causes blood cancer. So, to overcome the complications, we designed a subunit vaccine by the assimilation of B-cell, cytotoxic T-lymphocyte , and helper T-lymphocyte epitopes. The epitopes were joined together along with adjuvant and linkers and a vaccine was fabricated which was further subjected to 3D modeling. The physiochemical properties, allergenicity, and antigenicity were evaluated. Molecular docking and dynamics were performed with the obtained 3D model against toll like receptor (TLR-3) immune receptor. Lastly, in silico cloning was performed to ensure the expression of the designed vaccine in pET28a(+) expression vector. The future prospects of the study entailed the in vitro and in vivo experimental analysis for evaluating the immune response of the designed vaccine construct.  相似文献   

9.
Cancer is one of the common lifestyle diseases and is considered to be the leading cause of death worldwide. Epstein–Barr virus (EBV)-infected individuals remain asymptomatic; but under certain stress conditions, EBV may lead to the development of cancers such as Burkitt’s and Hodgkin’s lymphoma and nasopharyngeal carcinoma. EBV-associated cancers result in a large number of deaths in Asian and African population, and no effective cure has still been developed. We, therefore, tried to devise a subunit vaccine with the help of immunoinformatic approaches that can be used for the prevention of EBV-associated malignancies. The epitopes were predicted through B-cell, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) from the different oncogenic proteins of EBV. A vaccine was designed by combining the B-cell and T-cell (HTL and CTL) epitopes through linkers, and for the enhancement of immunogenicity, an adjuvant was added at the N-terminal. Further, homology modeling was performed to generate the 3D structure of the designed vaccine. Moreover, molecular docking was performed between the designed vaccine and immune receptor (TLR-3) to determine the interaction between the final vaccine construct and the immune receptor complex. In addition, molecular dynamics was performed to analyze the stable interactions between the ligand final vaccine model and receptor TLR-3 molecule. Lastly, to check the expression of our vaccine construct, we performed in silico cloning. This study needed experimental validation to ensure its effectiveness and potency to control malignancy.  相似文献   

10.
DNA vaccination has become an attractive immunization strategy against cancer. However, a major problem of DNA vaccination is its limited potency to be taken up by the antigen-presenting cells. In contrast, loss of immunogenic epitopes of tumour cells has urged the development of vaccines against multiple epitopes. In this study, we developed a novel strategy for the APC to efficiently cross-present a fusion tumour antigen, which contains both MHC class I-restricted and class II-restricted T-cell epitopes from Her-2/neu and p53 in a cognate manner. The N-terminus of the fusion Her-2/neu, p53 protein was linked to the sequence encoding for human secondary lymphoid-tissue chemokine for secretion and chemokinesis, and the C-terminus of the fusion protein was linked to a cell-binding domain of IgG (Fc portion, the cell-binding domain of IgG) for receptor-mediated internalization. Here, we show that the introduction of fused-gene DNA vaccine by gene gun reduced the size of established tumours and prolonged the lifespan of tumour-bearing mice. Results show that this DNA vaccination strategy can broadly enhance the antigen-specific cellular and humoral immune responses. This vaccine is capable of inducing adaptive immunity and may provide a novel, generic design for the development of therapeutic and preventive DNA vaccines.  相似文献   

11.
Antigenic differences between normal and malignant cells of the cancer patient form the rationale for clinical immunotherapeutic strategies. Because the antigenic phenotype of neoplastic cells varies widely among different cells within the same malignant cell-population, immunization with a vaccine that stimulates immunity to the broad array of tumor antigens expressed by the cancer cells is likely to be more efficacious than immunization with a vaccine for a single antigen. A vaccine prepared by transfer of DNA from the tumor into a highly immunogenic cell line can encompass the array of tumor antigens that characterize the patient's neoplasm. Poorly immunogenic tumor antigens, characteristic of malignant cells, can become strongly antigenic if they are expressed by highly immunogenic cells. A DNA-based vaccine was prepared by transfer of genomic DNA from a breast cancer that arose spontaneously in a C3H/He mouse into a highly immunogenic mouse fibroblast cell line, where genes specifying tumor-antigens were expressed. The fibroblasts were modified in advance of DNA-transfer to secrete an immune augmenting cytokine and to express allogeneic MHC class I-determinants. In an animal model of breast cancer metastatic to the brain, introduction of the vaccine directly into the tumor bed stimulated a systemic cellular anti-tumor immune response measured by two independent in vitro assays and prolonged the lives of the tumor-bearing mice. Furthermore, using antibodies against the various T-cell subsets, it was determined that the systemic cellular anti-tumor immunity was mediated by CD8(+), CD4(+) and NK/LAK cells. The application of DNA-based genomic vaccines for the treatment of a variety of brain tumors is being explored.  相似文献   

12.
The present study was undertaken to clone, express rabies virus glycoprotein (RVG) and to identify potential T-cell epitopes on it. RVG gene (1590 bp) was amplified using gene specific primers. The amplified product was cloned into pTZ57R/T cloning vector by TA cloning. RVG gene was subcloned into pcDNA3.1 (+) expression vector. In this study, cloning and expression of rabies virus glycoprotein gene was done under CMV promoter and an expression construct (pcDNA.RVG) was prepared and clones were confirmed by restriction digestion, colony PCR and nucleotide sequencing. The expression construct was further characterized by western blotting and indirect fluorescent antibody test (IFAT). In silico analysis of this protein was done to find out potential antigenic sites so that it can be further evaluated for its potential as candidate for epitope vaccine against rabies.  相似文献   

13.
The epitope specificity of the protective immune response against swine transmissible gastroenteritis (TGE) has been investigated by using circulating and secretory antibodies. This study was carried out with sows vaccinated with TGEV or the antigenically related porcine respiratory coronavirus (PRCV). TGEV vaccination of sows resulted in greater lactogenic protection of suckling piglets against TGEV challenge and a higher secretory immune response than PRCV vaccination did. These differences in the immune response were conditioned by the route of antigen presentation as a result of the different tropism of each virus. Epitopes on S protein, and in particular those contained in its antigenic site. A, were more immunogenic than epitopes on N and M proteins in both groups of vaccinated sows, as determined by a competitive radioimmunoassay. Minor differences in antibody response against the previously defined antigenic subsites Aa, Ab, and Ac were also detected, with subsite Ab being the most antigenic in both TGEV- and PRCV-immune sows. These findings suggest that antigenic site A on S protein, involved in virus neutralization, is the immunodominant site in pregnant sows that confer lactogenic protection. They also validate, in experiments with secretory antibodies, the antigenic maps made with murine monoclonal antibodies. Therefore, this antigenic site should be considered for vaccine or diagnostic development.  相似文献   

14.
DNA-based vaccination is a novel technique to efficiently stimulate humoral (antibody) and cellular (T cell) immune responses to protein antigens. In DNA-based vaccination, immunogenic proteins are expressed in in vivo transfected cells of the vaccine recipients in their native conformation with correct posttranslational modifications from antigen-encoding expression plasmid DNA. This ensures the integrity of antibody-defined epitopes and supports the generation of protective (neutralizing) antibody titers. Plasmid DNA vaccination is furthermore an exceptionally potent strategy to stimulate CD8+ cytotoxic T lymphocyte (CTL) responses because antigenic peptides are efficiently generated by endogenous processing of intracellular protein antigens. These key features make DNA-based immunization an attractive strategy for prophylactic and therapeutic vaccination against extra- and intracellular pathogens. In this brief review, we summarize the current state of expression vector design, DNA delivery strategies, priming immune responses to intracellular or secreted antigens by DNA vaccines and unique advantages of DNA- versus recombinant protein-based vaccines using the hepatitis B surface antigen (HBsAg) as a model antigen.  相似文献   

15.
The Zika virus is a rapidly spreading Aedes mosquito‐borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T‐lymphocyte and helper T‐lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B‐cell epitopes was also confirmed by B‐cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll‐like receptor‐3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine.  相似文献   

16.
The concept and operational definition of protein epitopes   总被引:2,自引:0,他引:2  
The antigenic determinants or epitopes of a protein correspond to those parts of the molecule that are specifically recognized by the binding sites or paratopes of certain immunoglobulin molecules. Epitopes are thus relational entities that require complementary paratopes for their operational recognition. Some authors consider that the concept of epitope necessarily involves the two properties of antigenic reactivity (ability to bind to a paratope) and immunogenicity (ability to induce an immune response). Such a view creates difficulties because it makes the existence of epitopes in a protein depend on immunogenetic and regulatory mechanisms of the immunized host. The delineation of epitopes can be achieved by antigenic cross-reactivity studies or by X-ray crystallography. Both approaches require specific criteria for deciding which residues of the antigen are in contact with the paratope and are functionally part of the epitope. The relative contribution of static accessibility, segmental mobility and induced fit to immune recognition remains controversial. Each of the methods used for analysing antigenic specificity is subject to various operational constraints originating from the type of experimental probe and from the format sensitivity and specificity of the immunoassay used. If a protein is assumed to contain as many epitopes as the number of different monoclonal antibodies that can be raised against it, the delineation of epitopes corresponds to the summation in various hosts of the immune repertoire specific for the antigen. Neutralization epitopes are a special subclass of the epitopes of infectious agents and toxins that are specifically recognized by antibody molecules able to neutralize the biological activity of the antigen. The identification of neutralization epitopes is important for the development of synthetic vaccines because it is this type of epitope that should be mimicked by synthesis and used as a vaccine for eliciting protective immunity. The first demonstration that synthetic peptides could elicit antibodies that neutralized viral infectivity was made by Anderer and his colleagues in the 1960s in their work with tobacco mosaic virus. Nearly 20 years passed before it was shown that antibodies to synthetic peptides were also able to neutralize the infectivity of other viruses such as foot-and-mouth disease, polio and hepatitis B viruses.  相似文献   

17.
Dengue, a mosquito-borne disease, is caused by four known dengue serotypes. This infection causes a range of symptoms from a mild fever to a sever homorganic fever and death. It is a serious public health problem in subtropical and tropical countries. There is no specific vaccine currently available for clinical use and study on this issue is ongoing. In this study, bioinformatics approaches were used to predict antigenic, immunogenic, non-allergenic, and conserved B and T-cell epitopes as promising targets to design an effective peptide-based vaccine against dengue virus. Molecular docking analysis indicated the deep binding of the identified epitopes in the binding groove of the most popular human MHC I allele (human leukocyte antigens [HLA] A*0201). The final vaccine construct was created by conjugating the B and T-cell identified epitopes using proper linkers and adding an appropriate adjuvant at the N-terminal. The characteristics of the new subunit vaccine demonstrated that the epitope-based vaccine was antigenic, non-toxic, stable, and soluble. Other physicochemical properties of the new designed construct including isoelectric point value, aliphatic index, and grand average of hydropathicity were biologically considerable. Molecular docking of the engineered vaccine with Toll-like receptor 2 (TLR2) model revealed the hydrophobic interaction between the adjuvant and the ligand binding regions in the hydrophobic channel of TLR2. The study results indicated the high potential capability of the new multi-epitope vaccine to induce cellular and humoral immune responses against the dengue virus. Further experimental tests are required to investigate the immune protection capacity of the new vaccine construct in animal models.

Communicated by Ramaswamy H. Sarma  相似文献   


18.
Efficient immune responses against pathogens are frequently characterized by the simultaneous targeting of multiple epitopes. However, it remains unclear how the targeting of multiple epitopes is maintained in the face of competition for antigenic stimulation. Here, we investigate this question by using mathematical models of the population dynamics of a viral pathogen, antigen presentation sites and T-cells. We first show that direct competition for access to antigen presenting sites and indirect competition through killing of the pathogen select for dominance of the T-cell response with the highest affinity for its epitope. We then incorporate in our model that epitopes can become down-modulated following interaction with epitope specific T-cells. We demonstrate that epitope down-modulation leads to differentiation of epitope presentation on antigen presenting sites. This differentiation promotes the coexistence of multiple epitope specific responses. Hence, we propose that the functional relevance of epitope down-modulation may be to enable the persistence of a broad immune response despite competition for antigenic stimulation.  相似文献   

19.
Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.  相似文献   

20.
Enterotoxigenic Escherichia coli causes diarrhea mostly in children under the age of 5 years in developing countries as well as individuals travelling to endemic regions. Every year globally there are 1.7 million cases of diarrhea, at present there are no available vaccines for ETEC therefore demand of an effective vaccine is urgently needed to recuperate diarrhea. So here, we are emphasizing on immuno-informatics approaches to develop an epitope-based vaccine against a global threat disease diarrhea. In this study, 4915 proteins of enterotoxigenic Escherichia coli proteome were screened for the identification of potential antigens that can be used as a good vaccine candidate. Binding of the promiscuous epitopes with Major Histocompatibility Complex (MHC) class I molecules, antigenicity, allergenicity, adhesion properties, population coverage, epitope conservancy and toxicity of the predicted epitopes were analyzed. Three epitopes NAIIFSPLL, AQTNNGQAN and ATDAAGSAR were found most antigenic in comparison to other epitopes predicted with the highest VaxiJen score above 1.7. Further the binding stability of the epitope and allele complex were validated by using in silico docking study. The epitope NAIIFSPLL and ATDAAGSAR have shown the highest binding score of ?4.5 and ?4.16 kcal/mol with HLA-B*5102 and HLA-A*6810 MHC class I allele, respectively. These two predicted epitopes are considered to have high potential to trigger a T cell-mediated immune response and could be a good choice in designing epitope-based vaccines against enterotoxigenic Escherichia coli after further investigation. Thus, in silico analysis results recommended the future development of an epitope vaccine that would be helpful in controlling the diarrheal infections worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号