首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
铁核结构对马脾铁蛋白释放铁动力学的影响   总被引:1,自引:0,他引:1  
建立H^% 参与马脾铁蛋白释放铁的动力方程,H^ 以1/2级反应方式参与铁蛋白释放铁核表层的铁。在酸性介质(PH6.5)中,铁蛋白释放铁的总平均速率(332Fe^3 /HSF.min)比在碱性介质(P8H8.0)中放铁的总平均速率(73Fe^3 /HSF.min)高4.6倍,铁蛋白的铁核结构和外加的磷酸盐均能影响该蛋白释放的速率,但并不改变其反应级数。  相似文献   

2.
Using pulse radiolysis and competition kinetics with cytochrome c, the reaction of superoxide with horse spleen ferritin was investigated. The second-order rate constant is estimated to be 2 ± 1 × 106dm3mol-1s-1  相似文献   

3.
猪脾铁蛋白电子隧道特性及释放铁途径的研究   总被引:14,自引:0,他引:14  
维生素C和连二亚硫酸钠混合后只能加速猪脾铁蛋白释放铁的速率,并不能使铁蛋白释放铁的动力学途径由复杂转化为简单.而单独维生素C却能利用蛋白壳上的电子隧道传递电子,迫使铁蛋白以二分之一的反应级数方式释放整体铁核的铁并起着抗磷酸盐阻遏释放铁速率的作用,简化释放铁的途径.对维生素C参与铁蛋白释放铁的机理进行了讨论.  相似文献   

4.
《Free radical research》2013,47(4-6):369-372
Using pulse radiolysis and competition kinetics with cytochrome c, the reaction of superoxide with horse spleen ferritin was investigated. The second-order rate constant is estimated to be 2 ± 1 × 106dm3mol?1s?1  相似文献   

5.
Iron administration to iron-starved cocklebur (Xanthium pensylvanicum) plants causes an increase in the iron content of ferritin fractions extracted from mature leaves. Xanthium plants grown under long days (vegetative stage) have more iron and ferritin than similarly iron-treated plants induced to flower under short day regimes. This first demonstration of ferritin in cocklebur (Compositae) leaves suggests that a substantial portion of iron that enters the iron-starved plant appears as this protein-iron macromolecule.  相似文献   

6.
Bacterial ferritin from Azotobacter vinelandii (AvBFo has a function in H2 uptake. The Fe3+ reduction on the surface of the iron core from AvBFo is accompanied simultaneously by H2 uptake, with a maximum activity of H2 uptake of 450 H2/AvBFo. A reduction potential of ?402 mV for iron reduction on the surface of the core is found. A shift to the red the protein absorbance peaks ranging from 280 to 290 nm is observed between pH5 and 9 under 100% H2 reduction. The reduction potential for iron release becomes negative at a rate of 0.025 mV/Fe2+ released. The kinetics of iron release on the surface of the core is a first-order reaction.  相似文献   

7.
The concentration of ferritin in serum gives a quantitative measure of the amount of storage iron in normal subjects and those with iron deficiency or overload. The mean level in normal men is 69 ng/ml, compared with 35 ng/ml in normal women. A concentration below 10 ng/ml is associated with a low transferrin saturation and iron-deficient erythropoiesis.  相似文献   

8.
In Vitro Studies of Ferritin Iron Release and Neurotoxicity   总被引:1,自引:1,他引:1  
Abstract: The increase in brain iron associated with several neurodegenerative diseases may lead to an increased production of free radicals via the Fenton reaction. Intracellular iron is usually tightly regulated, being bound by ferritin in an insoluble ferrihydrite core. The neurotoxin 6-hydroxydopamine (6-OHDA) releases iron from the ferritin core by reducing it to the ferrous form. Iron release induced by 6-OHDA and structurally related compounds and two other dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium iodide (MPP+) and 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), were compared, to identify the structural characteristics important for such release. 1,2,4-Trihydroxybenzene (THB) was most effective in releasing ferritin-bound iron, followed by 6-OHDA, dopamine, catechol, and hydroquinone. Resorcinol, MPP+, and TaClo were ineffective. The ability to release iron was associated with a low oxidation potential. It is proposed that a low oxidation potential and an ortho -dihydroxyphenyl structure are important in the mechanism by which ferritin iron is mobilized. In the presence of ferritin, both 6-OHDA and THB strongly stimulated lipid peroxidation, an effect abolished by the addition of the iron chelator deferoxamine. These results suggest that ferritin iron release contributes to free radical-induced cell damage in vivo.  相似文献   

9.
Release of iron from ferritin requires reduction of ferric to ferrous iron. The iron can participate in the diabetogenic action of alloxan. We investigated the ability of ascorbate to catalyze the release of iron from ferritin in the presence of alloxan. Incubation of ferritin with ascorbate alone elicited iron release (33 nmol/10 min) and the generation of ascorbate free radical, suggesting a direct role for ascorbate in iron reduction. Iron release by ascorbate significantly increased in the presence of alloxan, but alloxan alone was unable to release measurable amounts of iron from ferritin. Superoxide dismutase significantly inhibited ascorbate-mediated iron release in the presence of alloxan, whereas catalase did not. The amount of alloxan radical (A·) generated in reaction systems containing both ascorbate and alloxan decreased significantly upon addition of ferritin, suggesting that A· is directly involved in iron reduction. Although release of iron from ferritin and generation of A· were also observed in reactions containing GSH and alloxan, the amount of iron released in these reactions was not totally dependent on the amount of A· present, suggesting that other reductants in addition to A· (such as dialuric acid) may be involved in iron release mediated by GSH and alloxan. These results suggest that A· is the main reductant involved in ascorbate-mediated iron release from ferritin in the presence of alloxan and that both dialuric acid and A· contribute to GSH/alloxan-mediated iron release.  相似文献   

10.
Iron deficiency anemia is one of the serious ailments related to nutrition in the developing countries. Fruit and vegetable crops favor the bioavailability of iron. Banana is consumed as a staple food in the tropics. Iron-fortified bananas provide an effective means of controlling the iron deficiency. Embryogenic cells of banana cv. Rasthali (AAB) were transformed with soybean ferritin cDNA using two different expression cassettes pSF and pEFE-SF to express ferritin. Transgenic nature of the regenerated plants was confirmed by PCR. Transgenic plants were regenerated and analyzed through PCR and PCR-Southern analysis. The expression of ferritin was confirmed by RT-PCR. Iron and zinc levels in the transgenic and control plants were estimated by atomic absorption spectroscopy. A 6.32-fold increase in iron accumulation and a 4.58-fold increase in the zinc levels were noted in the leaves of transgenic plants. Thus, iron- and zinc-fortified bananas could be developed as a functional food to overcome the malnutrition-related iron deficiency. This is the first report on the iron and zinc fortification of banana.  相似文献   

11.
Ferritin, a 24-mer heteropolymer of heavy (H) and light (L) subunits, is the main cellular iron storage protein and plays a pivotal role in iron homeostasis by modulating free iron levels thus reducing radical-mediated damage. The H subunit has ferroxidase activity (converting Fe(II) to Fe(III)), while the L subunit promotes iron nucleation and increases ferritin stability. Previous studies on the H gene (Fth) in mice have shown that complete inactivation of Fth is lethal during embryonic development, without ability to compensate by the L subunit. In humans, homozygous loss of the L gene (FTL) is associated with generalized seizure and atypical restless leg syndrome, while mutations in FTL cause a form of neurodegeneration with brain iron accumulation. Here we generated mice with genetic ablation of the Fth and Ftl genes. As previously reported, homozygous loss of the Fth allele on a wild-type Ftl background was embryonic lethal, whereas knock-out of the Ftl allele (Ftl-/-) led to a significant decrease in the percentage of Ftl-/- newborn mice. Analysis of Ftl-/- mice revealed systemic and brain iron dyshomeostasis, without any noticeable signs of neurodegeneration. Our findings indicate that expression of the H subunit can rescue the loss of the L subunit and that H ferritin homopolymers have the capacity to sequester iron in vivo. We also observed that a single allele expressing the H subunit is not sufficient for survival when both alleles encoding the L subunit are absent, suggesting the need of some degree of complementation between the subunits as well as a dosage effect.  相似文献   

12.
The ability of the microbial Siderophores deferriferrichrome, deferriferrichrome A, and enterobactin to remove iron from ferritin has been investigated. In contrast to previously published data with other chelators, all three Siderophores rapidly released iron from the mammalian storage protein Enterobactin was found most efficient at removing ferritin-bound iron. Using this siderophore, the mechanism by which ferritin sequesters iron was studied The relative iron saturation level of ferritin influenced the rate of chelation by the microbial Siderophores.  相似文献   

13.
The effects of inorganic phosphate (Pi), the main intracellular membrane permeable anion capable of altering mitochondrial pH gradients (ΔpH), were measured on mitochondrial H2O2 release. As expected, Pi decreased ΔpH and increased the electric membrane potential (ΔΨ). Mitochondrial H2O2 release was stimulated by Pi and also by its structural analogue arsenate. However, acetate, another membrane-permeable anion, did not stimulate mitochondrial H2O2 release. The stimulatory effect promoted by Pi was prevented by CCCP, which decreases transport of Pi across the inner mitochondrial membrane, indicating that Pi must be in the mitochondrial matrix to stimulate H2O2 release. In conclusion, we found that Pi and arsenate stimulate mitochondrial reactive oxygen release, an effect that may contribute towards oxidative stress under conditions such as ischemia/reperfusion, in which high-energy phosphate bonds are hydrolyzed.  相似文献   

14.
For studying the effects of endogenous ferritin gene expressions (NtFer1, GenBank accession number ay083924; and NtFer2, GenBank accession number ay141105) on the iron homeostasis in transgenic tobacco (Nicotiana tabacum L.) plants expressing soybean (Glycine max Merr) ferritin gene (SoyFer1, GenBank accession number m64337), the transgenic tobacco has been produced by placing soybean ferritin cDNA cassette under the control of the CaMV 35S promoter. The exogenous gene expression was examined by both Northern- and Western-blot analyses. Comparison of endogenous ferritin gene expressions between nontransformant and transgenic tobacco plants showed that the expression of NtFer1 was increased in the leaves of transgenic tobacco plants, whereas the NtFer2 expression was unchanged. The iron concentration in the leaves of transgenic tobacco plants was about 1.5-folds higher than that in nontransformant. Enhanced growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weights significantly greater than those in the nontransformant. These results demonstrated that exogenous ferritin expression induced increased expression of at least one of the endogenous ferritin genes in transgenic tobacco plants by enhancing the ferric chelate reductase activity and iron transport ability of the root, and improved the rate of photosynthesis.  相似文献   

15.
姜廷波  丁宝建  李凤娟  杨传平 《遗传学报》2006,33(12):1120-1126
铁蛋白是一种由24个亚基组成的高分子贮藏蛋白质,可以储存多达4500个铁原子,在动植物及微生物的新陈代谢中起着非常重要的作用。有研究表明,外源铁蛋白的大量表达可以提高植物储存铁离子的能力。为了明确外源铁蛋白基因转化植物中内源铁蛋白基因差异表达与植物含铁量的关系,本研究在成功获得2个烟草铁蛋白基因的全长cDNA克隆NtFerl(登录号:ay083924)和NtFer2(登录号:ay141105)的基础上,以烟草品种SR-1(Nicotiana tabacum cv.Petit Havana SR-1)为受体,培育了转铁蛋白基因烟草。将双元载体pBI121中的GUS基因用来自大豆的铁蛋白基因SoyFer1(登录号:m64337)置换,利用农杆菌介导法转化烟草叶盘,获得在CaMV35S启动子驱动表达的大豆铁蛋白基因转化烟草植株。Northern杂交和Western杂交分析表明外源铁蛋白基因在转基因烟草中得到了正确表达。比较转基因烟草和非转基因烟草的内源铁蛋白基因表达强度、叶片铁含量、根系铁还原酶活性、株高和鲜重表明,外源铁蛋白基因不但促进了NtFer1的表达,提高转基因植株的储存铁的能力和根系铁还原酶活性,而且促进植株的生长速度。以上结果说明,外源铁蛋白基因转化烟草中内源铁蛋白基因的表达、铁离子的还原吸收及光和作用都得到了进一步的提高。  相似文献   

16.
Abstract: Both iron and the major iron-binding protein ferritin are enriched in oligodendrocytes compared with astrocytes and neurons, but their functional role remains to be determined. Progressive hypoxia dramatically induces the synthesis of ferritin in both neonatal rat oligodendrocytes and a human oligodendroglioma cell line. We now report that the release of iron from either transferrin or ferritin-bound iron, after a decrease in intracellular pH, also leads to the induction of ferritin synthesis. The hypoxic induction of ferritin synthesis can be blocked either with iron chelators (deferoxamine or phenanthroline) or by preventing intracellular acidification (which is required for the release of transferrin-bound iron) with weak base treatment (ammonium chloride and amantadine). Two sources of exogenous iron (hemin and ferric ammonium citrate) were able to stimulate ferritin synthesis in both oligodendrocytes and HOG in the absence of hypoxia. This was not additive to the hypoxic stimulation, suggesting a common mechanism. We also show that ferritin induction may require intracellular free radical formation because hypoxia-mediated ferritin synthesis can be further enhanced by cotreatment with hydrogen peroxide. This in turn was blocked by the addition of exogenous catalase to the culture medium. Our data suggest that disruption of intracellular free iron homeostasis is an early event in hypoxic oligodendrocytes and that ferritin may serve as an iron sequestrator and antioxidant to protect cells from subsequent iron-catalyzed lipid peroxidation injury.  相似文献   

17.
Bacterial ferritin from Azotobacter vinelandii (AvBFo has a function in H2 uptake. The Fe3+ reduction on the surface of the iron core from AvBFo is accompanied simultaneously by H2 uptake, with a maximum activity of H2 uptake of 450 H2/AvBFo. A reduction potential of –402 mV for iron reduction on the surface of the core is found. A shift to the red the protein absorbance peaks ranging from 280 to 290 nm is observed between pH5 and 9 under 100% H2 reduction. The reduction potential for iron release becomes negative at a rate of 0.025 mV/Fe2+ released. The kinetics of iron release on the surface of the core is a first-order reaction.  相似文献   

18.
19.
Mineralization in Ferritin: An Efficient Means of Iron Storage   总被引:22,自引:0,他引:22  
Ferritins are a class of iron storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. Iron is stored within the protein shell of ferritin as a hydrous ferric oxide nanoparticle with a structure similar to that of the mineral "ferrihydrite." The eight hydrophilic channels that traverse the protein shell are thought to be the primary avenues by which iron gains entry to the interior of eukaryotic ferritins. Twenty-four subunits constitute the protein shell and, in mammalian ferritins, are of two types, H and L, which have complementary functions in iron uptake. The H chain contains a dinuclear ferroxidase site that is located within the four-helix bundle of the subunit; it catalyzes the oxidation of ferrous iron by O(2), producing H(2)O(2). The L subunit lacks this site but contains additional glutamate residues on the interior surface of the protein shell which produce a microenvironment that facilitates mineralization and the turnover of iron(III) at the H subunit ferroxidase site. Recent spectroscopic studies have shown that a di-Fe(III) peroxo intermediate is produced at the ferroxidase site followed by formation of a mu-oxobridged dimer, which then fragments and migrates to the nucleation sites to form incipient mineral core species. Once sufficient core has developed, iron oxidation and mineralization occur primarily on the surface of the growing crystallite, thus minimizing the production of potentially harmful H(2)O(2).  相似文献   

20.
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2 and ura3 for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 μg per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号