首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light‐driven outward proton transporter assists energy production via an ATP synthase system best exemplified by the bacteriorhodopsin (BR) from Halobacterium salinarum, HsBR. As the only archaea able to survive in the resource‐limited ecosystem of the Dead Sea, Haloarcula marismortui has been reported to have a unique dual‐BR system, consisting of HmBRI and HmBRII, instead of only a single BR in a cell (solo‐BR). The contribution of this dual‐BR system to survival was investigated. First, native H. marismortui and H. salinarum cells were tested in water that had been adjusted to mimic the conditions of Dead Sea water. These archaea were shown to accumulate protons and reduce pH in their periplasmic regions, which disabled further proton transportation functionality in H. salinarum but not in H. marismortui. Then, pH‐dependent photocurrent measurements using purified BR proteins demonstrated that HsBR and HmBRI were functional at pH > 5.0 and that HmBRII was functional at pH > 4.0. Our results indicate that the dual‐HmBR system is composed of two BRs with different optimal functional pH ranges and together they maintain light‐driven proton transport activity under pH > 4.0, which might contribute the survival of H. marismortui under the acidic pH of the Dead Sea.  相似文献   

2.
Analysis of the Thermoplasma acidophilum DSM 1728 genome identified two putative alcohol dehydrogenase (ADH) open reading frames showing 50.4% identity against each other. The corresponding genes Ta0841 and Ta1316 encode proteins of 336 and 328 amino acids with molecular masses of 36.48 and 36.01 kDa, respectively. The genes were expressed in Escherichia coli and the recombinant enzymes were functionally assessed for activity. Throughout the study only Ta1316 ADH resulted active in the oxidative reaction in the pH range 2–8 (optimal pH 5.0) and temperatures from 25 to 90°C (optimal 75°C). This ADH catalyzes the oxidation of several alcohols such as ethanol, methanol, 2-propanol, butanol, and pentanol during the reduction of the cofactor NAD+. The highest activity was found in the presence of ethanol producing optically pure acetaldehyde. The specific enzyme activity of the purified Ta1316 ADH with ethanol as a substrate in the optimal conditions was 628.7 U/mg.  相似文献   

3.
Gluconacetobacter xylinus possesses a constitutive membrane-bound oxidase system for the use of ethanol. Its alcohol dehydrogenase complex (ADH) was purified to homogeneity and characterized. It is a 119-kDa heterodimer (68 and 41 kDa subunits). The peroxidase reaction confirmed the presence of haem C in both subunits. Four cytochromes c per enzyme were determined by pyridine hemochrome spectroscopy. Redox titrations of the purified ADH revealed the presence of four haem c redox centers, with apparent mid-point potential values (Em7) of −33, +55, +132 and +310 mV, respectively. The ADH complex contains one mol of pyrroloquinoline quinone as determined by HPLC. The enzyme was purified in full reduced state; oxidation was induced by potassium ferricyanide and substrate restores full reduction. Activity responses to pH were sharp, showing two distinct optimal pH values (i.e. pH 5.5 and 6.5) depending on the electron acceptor used. Purified ADH oxidizes primary alcohols (C2–C6) but not methanol. Noteworthy, aliphatic aldehydes (C1–C4) were also good substrates. Myxothiazol and antymicin A were powerful inhibitors of the purified ADH complex, most likely acting at the ubiquinone acceptor site in subunit II.  相似文献   

4.
Alcohol dehydrogenase (ADH; EC: 1.1.1.1) is a key enzyme in production and utilization of ethanol. In this study, the gene encoding for ADH of the haloalkaliphilic archaeon Natronomonas pharaonis (NpADH), which has a 1,068-bp open reading frame that encodes a protein of 355 amino acids, was cloned into the pET28b vector and was expressed in Escherichia coli. Then, NpADH was purified by Ni-NTA affinity chromatography. The recombinant enzyme showed a molecular mass of 41.3 kDa by SDS-PAGE. The enzyme was haloalkaliphilic and thermophilic, being most active at 5 M NaCl or 4 M KCl and 70°C, respectively. The optimal pH was 9.0. Zn2+ significantly inhibited activity. The K m value for acetaldehyde was higher than that for ethanol. It was concluded that the physiological role of this enzyme is likely the catalysis of the oxidation of ethanol to acetaldehyde.  相似文献   

5.
A novel protein from Gluconobacter oxydans DSM2003 which shows 60–70% similarity with members of aldo–keto reductase (AKR) superfamily was overexpressed in Escherichia coli BL21 (DE3) and purified by one step affinity chromatography with a Ni-NTA agarose column. The recombinant protein (named GOX0644) consists of 279 amino acids with an apparent molecular mass of 32 kDa in the soluble fraction, and the gene sequence encoding the protein GOX0644 is 100% identical to the ORF of gox0644 in G. oxydans 621H (DSM2343). For a detailed analysis of its enzymatic activity, the substrate specificity of the recombinant protein GOX0644 was determined. With NADPH as a cofactor, GOX0644 exhibited better activity to aromatic aldehydes, especially o-chlorobenzaldehyde, compared to aliphatic aldehydes. It showed almost no activity toward glyceraldehyde, xylose, glucose, and ketones. The protein was unable to oxidize primary- or secondary alcohols. Based on these results, GOX0644 was defined as a novel NADPH-dependent aldehyde reductase. Kinetic parameters of the protein and the dependence of its activity on temperature and pH were also determined.  相似文献   

6.
Keratinase from Pseudomonas aeruginosa KS-1 was expressed constitutively as an extracellular protein in Escherichia coli with high specific activity of 3.7 kU/mg. It was purified fourfold as a 33 kDa monomeric protein by Q-Sepharose ion exchange chromatography with a recovery of 95%. It is a serine protease with optimal activity at pH 9 and 50°C. It was stable from pH 4 to 12 for 1 h with a t1/2 of 12 min at 70°C. It hydrolyzed haemoglobin > fibrin > feather keratin > azo-casein > casein > meat protein > gelatin. Among synthetic substrates, it efficiently hydrolyzed N-Suc-ala-ala-pro-phe-pNA, N-Suc-ala-ala-ala-pNA, N-Suc-ala-ala-pro-leu-pNA and also plasmin substrate, d-Val-Leu-Lys-pNA  相似文献   

7.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

8.
The araA gene encoding an L-arabinose isomerase (L-AI) from the acido-thermophilic bacterium Acidothermus cellulolytics ATCC 43068 was cloned and overexpressed in Escherichia coli. The open reading frame of the L-AI consisted of 1,503 nucleotides encoding 501 amino acid residues. The recombinant L-AI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The molecular mass of the enzyme was estimated to be approximately 55 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was optimally active at 75°C and pH 7.5. It required divalent metal ions, either Mn2+ or Co2+, for both enzymatic activity and thermostability improvement at higher temperatures. The enzyme showed relatively high activity and stability at acidic pH. It exhibited over 90% of its maximal activity at pH 6.0 and retained 80% of activity after 12 h incubation at pH 6.0. Catalytic property study showed that the enzyme had an interesting catalytic efficiency. Its apparent K m, V max, and catalytic efficiency (k cat/K m) for D-galactose was 28.9 mM, 4.9 U/mg, and 9.3 mM−1 min−1, respectively. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield over 50% after 12 h under optimal conditions, suggesting its potential in D-tagatose production.  相似文献   

9.
The thermotolerant methylotrophic yeast Hansenula polymorpha has recently been gaining interest as a promising host for bioethanol production due to its ability to ferment xylose, glucose, and cellobiose at elevated temperatures up to 48 °C. In this study, we identified and characterized alcohol dehydrogenase 1 of H. polymorpha (HpADH1). HpADH1 seems to be a cytoplasmic protein since no N-terminal mitochondrial targeting extension was detected. Compared to the ADHs of other yeasts, recombinant HpADH1 overexpressed in Escherichia coli exhibited much higher catalytic efficiency for ethanol oxidation along with similar levels of acetaldehyde reduction. HpADH1 showed broad substrate specificity for alcohol oxidation but had an apparent preference for medium chain length alcohols. Both ADH isozyme pattern analysis and ADH activity assay indicated that ADH1 is the major ADH in H. polymorpha DL-1. Moreover, an HpADH1-deleted mutant strain produced less ethanol in glucose or glycerol media compared to wild-type. Interestingly, when the ADH1 mutant was complemented with an HpADH1 expression cassette, the resulting strain produced significantly increased amounts of ethanol compared to wild-type, up to 36.7 g l−1. Taken together, our results suggest that optimization of ADH1 expression would be an ideal method for developing H. polymorpha into an efficient bioethanol production strain.  相似文献   

10.
A β-mannosidase gene (TM1624) from Thermotoga maritima MSB8, the hyperthermophilic bacterium was expressed as a soluble C-terminal His-tagged protein in E. coli. Heat treatment of cell lysate followed by metal affinity- and anion-exchange chromatographic techniques the recombinant β-mannosidase was purified to apparent homogeneity. The recovery of the purified protein from the crude lysate was 23%. Results of SDS-PAGE analysis (96.8 kDa) and gel permeation chromatography (93.2 kDa) indicated monomeric nature of the β-mannosidase protein. The enzyme displayed its maximal activity at pH 7.0 with pH stability over a range of pH 5.0–9.0. Similarly, the optimum temperature for maximal activity was found to be 95 °C and thermostability of up to 85 °C. The substrate specificity and kinetics of the enzyme was studied using different mannooligosaccharides and pNP-β-d-mannopyranoside. The Km value of the purified enzyme for pNPM was 0.49 mM. Different mannooligosaccharides tested as enzyme substrates were hydrolysed in an exo-wise manner when checked by thin-layer chromatography (TLC). The enzyme also exhibited transglycosidase activity when the reaction was carried out with 10% (w/v) of mannobiose in the presence of alcohols or galactose. Because of extreme thermostability and transglyocosylation properties of β-mannosidase from T. maritima, the enzyme may be of industrial applications in future. This is the first report on the purification and characterization of a β-mannosidase from T. maritima.  相似文献   

11.
Lactobacillus kefir DSM 20587 produces an (R)-specific NADP-dependent alcohol dehydrogenase (ADH) with a broad substrate specificity. The gene of this ADH was isolated and the complete nucleotide sequence determined. The adh gene comprises 759?bp and encodes a protein of 252 amino acids with a calculated molecular weight of 26 781?Da. The deduced amino acid sequence indicated a high degree of similarity to short-chain dehydrogenases. After cloning and expression in Escherichia coli the enzyme was purified and characterized. For the reduction of acetophenone the specific activity of the homogeneous recombinant ADH was 558?U?mg?1. The enzyme shows its maximum activity at 50°C while the pH optimum was at pH?7.0. In order to demonstrate its preparative application, purified ADH was used for the stereoselective reduction of several aliphatic and aromatic ketones as well as β-keto esters. Glucose dehydrogenase was added for the regeneration of NADPH. All prochiral ketones were stereoselectively reduced to the corresponding alcohols with >99% ee and in the case of diketones >99% de.  相似文献   

12.
The sequence corresponding to the mature lipase of Rhizopus oryzae WPG (ROLw) was subcloned in the pPIC9K expression vector, with a strong AOX1 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. The His-tagged lipase was expressed in Pichia Pastoris X33 and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). High level expression of the lipase by Pichia Pastoris X33 cells harbouring the lipase gene containing expression vector was observed upon induction with 2.5 g/l methanol at 28°C; the specific activity of the purified His6-ROLw was 1,500 or 760 U/mg using olive oil emulsion or tributyrin as substrates, respectively. To check the importance of Asn 134 His substitution in the affinity and substrate selectivity of ROLw, the mutant His6-ROLw-N134H was overexpressed in Pichia Pastoris X33 and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged ROLw-N134H was 5,900 and 35 U/mg using olive oil emulsion or tributyrin as substrate. A comparative study of the wild type (His6-ROLw) and the mutant (His6-ROLw-N134H) proteins was carried out. A 3D structure model of ROLw was built using the RNL structure as template. We have concluded that a slight increase in the exposed hydrophilic residues on the surface of ROLw as compared to RNL (ROLwN134H) could be responsible for a higher selectivity of ROlw for long and short chain triacylglycerols at the lipid/water interface and then explaining the importance of Asn 134 for the chain length specificity of ROLw. This property is quite rare among Rhizopus lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

13.
Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L−1. EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L−1. The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.  相似文献   

14.
A chitinase with antifungal activity was isolated from mung bean (Phaseolus mungo) seeds. The procedure entailed aqueous extraction, (NH4)2SO4 precipitation, ion-exchange chromatography on CM-Sepharose, high-performance liquid chromatography (HPLC) on Poros HS-20, and gel filtration on Sephadex G-75. The protein exhibited a molecular mass of 30.8 kDa in SDS–polyacrylamide gel electrophoresis. Its pI was 6.3 as determined by isoelectric focusing. The specific activity of the chitinase was estimated to be 3.81 U/mg. The enzyme expressed its optimum activity at pH 5.4 and was stable from 40 to 50 °C. It exerted antifungal action toward Fusarium solani, Fusarium oxysporum, Mycosphaerella arachidicola, Pythium aphanidermatum, and Sclerotium rolfsii.  相似文献   

15.
Two types of extracellular proteases with molecular mass of 50.0 and 44.8 kDa were found in H10 enzymes partially purified from Bacillus cereus H10. Further identification using liquid chromatography-tandem mass spectrometry, the enzyme with 50.0 kDa was identified as being similar to leucine dehydrogenase; while the enzyme with 44.8 kDa might be a novel keratinolytic enzyme with little similarity to other proteins. To maximize the keratinolytic and proteolytic abilities in the H10 enzymes, a combination of response surface methodology and sequential quadratic programming technique was used to study the hydrolytic pH and temperature. Results showed that the H10 enzymes could produce optimal proteolytic and keratinolytic activities at a hydrolysis temperature of 59°C at pH 7.57. Testing the protease activity on various protein substrates and temperatures indicated that the H10 enzymes showed high thermal stability and were very effective in porcine hair.  相似文献   

16.
Purification and matrix-assisted refolding of recombinant His-tagged polyhydroxyalkanoate (PhaZ) depolymerase from Pseudomonas putida KT2442 was carried out. His-tagged enzyme was overproduced as inclusion bodies in recombinant E. coli M15 (pREP4, pPAZ3), which were denatured by 8 M urea, immobilized on Ni2+-nitrilotriacetate-agarose matrix, and refolded by gradual removal of the chaotropic agent. The refolded enzyme could not be eluted with 1 M imidazole buffer, leading to an immobilized biocatalyst where PhaZ depolymerase was homogeneously distributed in the agarose support as shown by confocal scanning microscopy. Polyhydroxyoctanoate could not be hydrolyzed by this novel immobilized biocatalyst, whereas the attached enzyme was active in the hydrolysis of p-nitrophenyl alkanoate esters, which differed in their alkyl chain length. Taking advantage of the observed esterase activity on p-nitrophenylacetate, functional characterization of immobilized PhaZ depolymerase was carried out. The immobilized enzyme was more stable than its soluble counterpart and showed optimal hydrolytic activity at 37°C and 50 mM phosphate buffer pH 8.0. Kinetic parameters were obtained with both p-nitrophenylacetate and p-nitrophenyloctanoate, which had not been described so far for the soluble enzyme, representing an attractive and alternative chromogenic assay for the study of this paradigmatic enzyme.  相似文献   

17.
Lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate. This glycolytic intermediate, which can be imported to the plastid and enter in the OPPP, is the substrate and product of cytosolic phosphoglucose isomerase (cPGI, EC 5.3.1.9). In this report, we describe the cloning of a full-length cDNA encoding cPGI from developing sunflower seeds. The sequence was predicted to code for a protein of 566 residues characterised by the presence of two sugar isomerase domains. This cDNA was heterologously expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified using immobilised metal ion affinity chromatography and biochemically characterised. The enzyme had a specific activity of 1,436 μmol min−1 mg−1 and 1,011 μmol min−1 mg−1 protein when the reaction was initiated with glucose-6-phosphate and fructose-6-phosphate, respectively. Activity was not affected by erythrose-4-phosphate, but was inhibited by 6-P gluconate and glyceraldehyde-3-phosphate. A polyclonal immune serum was raised against the purified enzyme, allowing the study of protein levels during the period of active lipid synthesis in seeds. These results were compared with PGI activity profiles and mRNA expression levels obtained from Q-PCR studies. Our results point to the existence of a possible post-translational regulatory mechanism during seed development. Immunolocalisation of the protein in seed tissues further indicated that cPGI is highly expressed in the procambial ring.  相似文献   

18.
Marine bacterial isolates were screened for phospholipase C (PLC) activity on PCY agar plates containing phosphatidylcholine (PC) as substrate. The strain that showed the highest activity on a PCY screening agar plate and a thin-layer chromatography was identified as a strain of Pseudoalteromonas and subsequently designated Pseudoalteromonas sp. J937. The extracellular PLC of the strain J937 was purified to a specific activity of 33 U mg−1 protein by serial ion exchange and gel filtration column chromatography. It had a molecular mass of 32 kDa estimated by SDS–PAGE. The optimal pH and temperature of the enzyme were about pH 8 and 45°C, respectively. The PLC hydrolyzed phosphatidylethanolamine as well as PC but not other glycerophospholipids. Its activity was enhanced by 150% with Ca2+ (200 mM) and by 180% with Na+ (500 mM), suggesting that the purified PLC is a marine-type enzyme.  相似文献   

19.
A new immobilisate of alcohol dehydrogenase (ADH) is described in which all components for the reaction, i.e. enzyme, the coenzyme NADP+, the buffer and other cofactors (trace elements), are immobilized together. It is an all-inclusive catalyst. The support is a cheap, commercially-available, superabsorbent polymer. The immobilisation is easy to achieve. The superabsorbed ADH is, even when dried, a stable and storable catalyst for at least five weeks at −18°C. Asymmetric reductions of the prochiral ketones, acetophenone, 4-acetylpyridine and ethyl acetoacetate, with a superabsorbed ADH from Lactobacillus brevis (ADH 002) and a superabsorbed ADH from Thermoanaerobicum sp. (ADH 005) in 2-propanol as both the organic solvent and the cofactor-regenerating substrate are given. Yields of chiral (R) and (S)-alcohols from 97–100% were achieved within 18 to 48 h with enantiomeric excesses of >99%. The superabsorbed ADH was easily separated by filtration and could be reused at least four times.  相似文献   

20.
《Process Biochemistry》2014,49(6):927-935
The esterase E34Tt (YP_004875.1) from Thermus thermophilus HB27 was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The gene sequence was subcloned into a T-vector, released with the restriction enzymes BamHI and HindIII, ligated to a pET-21d(+) vector, and transferred to E. coli BL21 (DE3) cells. Inducer concentration (isopropyl β-d-1-thiogalactopyranoside, IPTG) and cultivation time before and after induction were optimized. Best results were obtained by adding 0.25 mM IPTG after 8 h of cultivation and maintaining the induction during 4 extra hours. Most of the enzyme (94%) remained membrane-associated and had to be extracted with a detergent. From the membrane crude extract, the His-tagged E34Tt was purified as a dimer (71.8 kDa) in a single purification step by using metal affinity chromatography. The Rosso's model was used to optimize the reaction conditions. E34Tt-His6 was active in a wide temperature (19.7–79.4 °C) and pH range (4.0–9.3), and maximal activity was determined at pH 6.3 and 58.2 °C, which is 10–18 °C higher than the optimal reaction temperature of the previously reported variants expressed in mesophilic yeasts. E34Tt-His6 preferentially hydrolyzed esters with ten carbon atoms, and was highly thermostable (half-life of 107.9 min at 85 °C), suggesting that E34Tt-His6 has potential for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号