首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The metabolism of [U-14C]glucose by the isolated diaphragm muscle of normal rats, rats rendered diabetic with streptozotocin and rats with transitory insulin deficiency after an injection of anti-insulin serum was studied. 2. The incorporation of [14C]glucose into glycogen and oligosaccharides was significantly decreased in the diabetic diaphragm muscle and in the muscle from rats treated with anti-insulin serum. 3. Neither diabetes nor transitory insulin deficiency influenced the oxidation of glucose, or the formation of lactate and hexose phosphate esters from glucose. 4. Insulin fully restored the incorporation of glucose into glycogen and maltotetraose in the diabetic muscle, but the incorporation into oligosaccharides, although increased in the presence of insulin, was significantly lower than the values obtained with normal diaphragm in the presence of insulin.  相似文献   

2.
To elucidate the effect of nutrition during induction on peripheral muscle responsiveness to insulin, the incorporation of radiolabeled glucose to glycogen and the uptake of radiolabeled deoxyglucose were studied in isolated diaphragms from the fetuses of normal and diabetic pregnant rats in vitro. Basal- and insulin-stimulated incorporation of [1-14C]glucose into diaphragm glycogen were greater in the fetuses of diabetic mothers (IDM) than in normal fetuses, but there was no difference in the degree of stimulation by insulin of labeled glucose into glycogen between normal fetuses and IDM. Diaphragms from normal fetuses and IDM had the same basal uptake of 2-deoxy-[1-3H]glucose as well as insulin-stimulated uptake. Consequently the sensitivity of glucose uptake to insulin was similar both in normal fetuses and IDM. These data indicate that glucose utilization (incorporation of labeled glucose into glycogen) was increased in IDM, but that the response of glucose uptake and glycogenesis to insulin was not altered.  相似文献   

3.
The metabolism of d-galactosamine and N-acetyl-d-galactosamine in rat liver   总被引:3,自引:3,他引:0  
d-[1-14C]Galactosamine appears to be utilized mainly by the pathway of galactose metabolism in rat liver, as evidenced by the products isolated from the acid-soluble fraction of perfused rat liver. These products were eluted in the following order from a Dowex 1 (formate form) column and were characterized as galactosamine 1-phosphate, sialic acid, UDP-glucosamine, UDP-galactosamine, N-acetylgalactosamine 1-phosphate, N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and an unidentified galactosamine-containing compound. In addition, [1-14C]glucosamine was found in the glycogen, an incorporation previously shown to result from the substitution of UDP-glucosamine for UDP-glucose in the glycogen synthetase reaction. Analysis of the [1-14C]glucosamine-containing disaccharides released from glycogen by β-amylase provided additional evidence that they consist of a mixture of glucose and glucosamine in a 1:1 ratio, but with glucose predominating on the reducing end. UDP-N-acetylgalactosamine was shown to result from the reaction of UTP with N-acetylgalactosamine 1-phosphate in the presence of a rat liver extract.  相似文献   

4.
An enzymic activity, obtained from Neurospora crassa, catalyzing the incorporation of [14C]glucose from ADP-[14C]glucose into a glucan of the glycogen type, is described. The properties of the ADPglucose: glycogen glucosyltransferase as compared with those of the already known UDP glucose: glycogen glucosyltransferase were studied. The radioactive products obtained with UDP-[14C]glucose or ADP-[14C]glucose released all the radioactivity as maltose after α or β amylase treatment. Glucose 6-phosphate stimulated the synthetase when UDP-[14C]glucose was the substrate but the stimulation was much greater with ADP-[14C]glucose as glucosyl donor. Glucose 6-phosphate plus EGTA gave maximal stimulation. The system was completely dependent on the presence of a ‘primer’ of the α 1 → 4 glucan type.  相似文献   

5.
Measurements have been made of the activities of enzymes of the pentose phosphate pathway, the glucuronate-xylulose pathway, hexokinase and phosphofructokinase in kidney of diabetic and normal rats. The activities of these enzymes keep pace with kidney growth, remaining constant per gram tissue but showing a marked increase on the basis of total activity per 100 g body wt. The formation of 14CO2 from [1-14C]glucose and [6-14C]glucose by kidney slices from diabetic rats was decreased to approximately half the control value; evidence was obtained for an equivalent dilution of the glucose 6-phosphate pool. Correction of the 14CO2 yields for the change in specific activity of glucose 6-phosphate yielded values consistent with the enzyme profile. Calculations from specific yields of 14CO2 provided evidence for an increased flux of glucose via the pentose phosphate pathway in the kidney in diabetes. The results are discussed in relation to kidney hypertrophy in diabetes and the requirement for ribose 5-phosphate and NADPH for biosynthetic reactions and in relation to the thickening of the basement membrane in diabetes. These results are in accord with the concept of glucose overutilization by non-insulin-requiring tissues.  相似文献   

6.
1. The metabolism of [U-(14)C]glucose in perfused resting and contracting diaphragm muscle from normal rats and rats made diabetic with streptozotocin was studied in the presence and absence of insulin. 2. The incorporation of [U-(14)C]-glucose into glycogen and oligosaccharides was stimulated by insulin under all experimental conditions studied. 3. In the normal perfused resting diaphragm muscle the incorporation of radioactivity from [(14)C]glucose into lactate and CO(2) was not affected by insulin. 4. Periodic contractions, induced by electrical stimulation of the perfused diaphragm muscle in the absence of insulin, caused an increased incorporation of (14)C into glycogen and hexose phosphate esters, whereas incorporation of (14)C into lactate was greatly decreased. Production of (14)CO(2) in the contracting muscle was not significantly different from that in resting muscle. Addition of insulin to the perfusion liquid caused a further increase in formation of [(14)C]-glycogen in contracting muscle to values reached in the resting muscle in the presence of insulin. Formation of [(14)C]lactate was also stimulated by insulin, to values close to those found in the resting muscle in the presence of insulin. 5. In the diabetic resting muscle the rate of glucose metabolism was very low in the absence of insulin. Insulin increased formation of [(14)C]glycogen to the value found in normal muscle in the absence of insulin. Production of (14)CO(2) and formation of [(14)C]hexose phosphate remained unchanged. 6. In the diabetic contracting muscle production of (14)CO(2) was increased to values approaching those found in normal contracting muscle. Formation of [(14)C]lactate and [(14)C]glycogen was also increased by contraction, to normal values. Only traces of [(14)C]hexose phosphate were detectable. Addition of insulin to the perfusion medium stimulated formation of [(14)C]glycogen, to values found in normal contracting muscle. Production of [(14)C]hexose phosphate was stimulated by insulin, to approximately the values found in the normal contracting muscle. Production of (14)CO(2) and [(14)C]lactate, however, was not significantly affected by insulin. 7. These results indicate that the defects of glucose metabolism observed in perfused resting diabetic diaphragm muscle can be partially corrected by contraction, and in the presence of insulin the contracting diabetic muscle has a completely normal pattern of glycogen synthesis and lactate production, but CO(2) production remains impaired.  相似文献   

7.
8.
1. The dissimilation of a number of externally added hexose phosphates and 5′-nucleotides by the perfused rat heart is described, and non-specific esterase and 5′-nucleotidase activity associated with the superficial cell membrane or vascular system has been demonstrated. 2. The rate of production of 14CO2 from [U-14C]glucose 6-phosphate suggests that oxidation occurred after hydrolysis to glucose. The incorporation of isotope from [U-14C]glucose 6-phosphate into glycogen was small, and similar to that obtained with [U-14C]glucose as substrate. 3. Glucose 6-phosphate was also partially isomerized to fructose 6-phosphate. Similarly, fructose 6-phosphate was converted mainly into glucose 6-phosphate, but also into glucose and inorganic phosphate. When fructose 1,6-diphosphate was added to the perfusate, a mixture of glucose 6-phosphate, fructose 6-phosphate and triose phosphates accumulated in the medium approximately in the equilibrium proportions of the phosphohexose-isomerase and triose phosphate-isomerase reactions, together with inorganic phosphate and some glucose. Glucose 1-phosphate was hydrolysed to glucose, but was not converted into glucose 6-phosphate. Leakage of enzymes out into the perfusion fluid did not occur. 4. This demonstration that phosphohexose isomerase, triose phosphate isomerase and aldolase may react with extracellular substrates at an appreciable rate suggests that these enzymes are attached to the cell membrane.  相似文献   

9.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

10.
Hepatocytes isolated from obese Zucker rats showed a significantly higher rate of both [U-14C]glucose and [U-14C]lactate incorporation into [14C]lipid than those from their lean counterparts. This was associated with a marked increase in the lipogenic rate measured by the incorporation of3H2O into the cell esterified fatty acids. Although there were no changes in the incorporation of the tracer into either [14C]glycogen or14CO2, the [14C] total uptake was significantly higher in the obese animals. The high rate of [14C]lipid synthesis from glucose was observed both at 15 and 30 mM substrate concentrations and was linked to an enhanced uptake of the tracer into the cell as measured using the decarboxilation of [1-14C]glucose in the presence of phenazine methosulphate. The presence of insulin in the incubation medium had no effect on the uptake of glucose by the liver cells. However, the large uptake of glucose by the hepatocytes from the obese animals was not related to an enhanced rate of transport as measured using 3-O-methyl[U-14C]glucose. The activity of glucose-6-phosphate dehydrogenase together with a higher [1-14C]glucose/[U-14C]glucose descarboxylation ratio indicate a predominant very active pentose phosphate pathway which may be responsible for the enhanced glucose uptake observed in the hepatocytes from the obese animals.  相似文献   

11.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

12.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

13.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

14.
Rat hemidiaphragms were loaded with [U-14C] glucose at 2°C and subsequently incubated at 37°C with non-labeled glucose or [14C] glucose in the presence or absence of insulin. The incorporation of isotope into glycogen and lactate was determined. The results showed that insulin markedly stimulated the synthesis of glycogen from extracellular glucose while it had no effect on incorporation of isotope into glycogen from intracellular glucose. Lactate formation was not influenced by insulin. It was concluded that glucose transport in muscle is linked to glycogen sythesis and that insulin preferentially directs glucose entering the cell toward the formation of glycogen.  相似文献   

15.
《Insect Biochemistry》1988,18(6):531-538
Studies were made on 13C and 31P NMR in larvae of two species of silkworm, Bombyx mori and Philosamia cynthia ricini, in vivo as well as in vitro to determine the pathways of glucose utilization, especially those to amino acids as components of silk fibroin. Results showed that the 13C of [1-13C]glucose administered orally into 5th instar larvae of both species was incorporated into glucose-1-phosphate, glucose-6-phosphate and trehalose. Serine, glutamate, glutamine, citrate, malate, trehalose and sorbitol-6-phosphate were detected in the hemolymphs of these larvae as metabolites of [1-13C]glucose. Two days after [1-13C]glucose administration, labeled alanine, glycine, serine, urea, glycogen, trehalose and glycerol were clearly detected in Bombyx larvae. Starvation caused rapid consumption of administered [1-13C]glucose with very little accumulation of 13C in glycogen or trehalose. In the in vivo31P NMR spectra of Bombyx larvae, ATP, arginine phosphate, sorbitol-6-phosphate, uridine diphosphoglucose, phosphoenolpyruvate and inorganic phosphate were detected with some sugar phosphates, such as glucose-1-phosphate and glucose-6-phosphate. During starvation, the intensity of the signal of inorganic phosphate increased and those of sugar phosphate other than sorbitol-6-phosphate decreased, but these changes were reversed by oral administration of glucose.  相似文献   

16.
B Christ  K Jungermann 《FEBS letters》1987,221(2):375-380
[14C]Glucose release either from endogenous 14C-prelabelled glycogen or from added 14C-labelled glucose 6-phosphate was measured in filipin-treated, permeabilized hepatocytes in 48 h culture. [14C]Glucose output from prelabelled glycogen was not altered by the addition of 5 mM glucose 6-phosphate to the incubation medium. Conversely, [14C]glucose release from 5 mM labelled glucose 6-phosphate was not influenced by different glycogen concentrations in the cells. Moreover, in the permeabilized cells the anion transport inhibitor DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) inhibited only the liberation of [14C]glucose from labelled glucose 6-phosphate but not from glycogen. It is therefore concluded that there exist at least 2 separate, mutually non-accessible glucose 6-phosphate pools in cultured rat hepatocytes, one linked to glycogenolysis and the other to gluconeogenesis.  相似文献   

17.
Carbohydrate metabolism in liver from foetal and neonatal sheep   总被引:5,自引:4,他引:1       下载免费PDF全文
1. During development of the sheep, the activities of UDP-glucose–α-glucan glucosyltransferase and UDP-glucose pyrophosphorylase and the glycogen content are highest in the liver of lambs 2 weeks old and considerably lower in liver from adult sheep. 2. The activity of hexokinase and the rate of incorporation of [14C]-glucose into glycogen are much lower in liver from postnatal sheep than in rat liver. 3. The activities of hexose diphosphatase and glucose 6-phosphatase and the rates of incorporation of [14C]pyruvate and [14C]propionate into glycogen increase from low levels in the liver of foetal sheep to maxima a few weeks after birth. The activities in the liver of adult sheep are slightly lower. 4. The incorporation rate of [14C]pyruvate into glucose has been measured in liver slices from rats, sheep and chick embryos at several ages of these animals. This pathway is active in liver from foetal sheep, embryonic chicks and postnatal rats or sheep, but is absent from the liver from foetal rats. 5. Fructose metabolism, as measured by the rates of incorporation of [14C]fructose into glycogen and glucose in liver slices and by assays of liver ketohexokinase, is barely detectable in the liver of foetal sheep and appears soon after birth. 6. During development of the sheep, the incorporation rate of [14C]galactose into glycogen in liver slices is highest in foetal sheep and decreases with increasing age of the animal. 7. These findings are discussed with reference to the changing pattern of carbohydrate metabolism during neonatal development of liver in the sheep.  相似文献   

18.
In Drosophila virilis salivary glands the in vitro activities of enzymes involved in the glucosamine pathway were examined during the third larval instar and in the prepupa. While glutamine-fructose-6-phosphate aminotransferase (EC 5.3.1.19) becomes inactive at the time of puparium formation, glucosamine-6-phosphate isomerase (EC 5.3.1.10) and glucosamine-6-phosphate N-acetyltransferase (EC 2.3.1.3) show maximal activities in the prepupal gland. The activity of UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) may also decrease prior to puparium formation. Incubation of larval and prepupal glands in medium containing [3H]glucose + [14C]-uridine or [14C]glucosamine and subsequent separation of intermediates of the glucosamine pathway by chromatographic procedures reveal that the capacity of the glands to incorporate the isotopes into these intermediates decreases significantly at the time of puparium formation. The results suggest that in D. virilis salivary glands the formation of aminosugars is mainly controlled by the activities of the two enzymes glutamine-fructose-6-phosphate aminotransferase and UDP-N-acetylglucosamine pyrophosphorylase.  相似文献   

19.
Glucose metabolism in mouse pancreatic islets   总被引:35,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

20.
We propose the following scheme for cerebral uptake and overall metabolism of glucose in vivo: that brain selects from two pools of glucose anomers in arterial blood, that it takes up excess glucose, that glucose enters the brain tissue as glucose-6-phosphate through the actions of mutarotase and hexokinase, that some glucose-6-phosphate becomes metabolized to CO2 and some becomes incorporated into brain carbon pools, and that excess glucose-6-phosphate leaves brain through glucose-6-phosphatase and mutarotase activities. This results from our observations in arterio-venous studies for the determination of cerebral metabolism in humans in vivo that the cerebral uptake of [14C]glucose often appeared to differ from that of unlabeled glucose. With rapidly falling arterial radioactivity, unlabeled glucose uptake was more than [14C]glucose. With rising arterial radioactivity, [14C]glucose extraction extraction exceeded unlabeled glucose. Studies with [14C]glucose-6-phosphate suggested that glucose-6-phosphatase in brain removes excess substrate by dephosphorylation. However, when arterial [14C]glucose increased slowly, [14C]glucose uptake varied considerably and the data resembled human cerebral metabolism of glucose anomers. An experiment employing [13C]glucose and NMR provided further support for our proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号