首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary (1) When salts are added to buffered suspensions of membrane fragments containing the fluorochrome 1-anilino-8-naphthalenesulfonate (ANS), there is an increased fluorescence. This is caused by increased binding of the fluorochrome; the intrinsic fluorescence characteristics of the bound dye remain unaltered. These properties make ANS a sensitive and versatile indicator of ion association equilibria with membranes. (2) Alkali metal and alkylammonium cations bind to membranes in a unique manner. Cs+ binds most strongly to rat brain microsomal material, with the other alkali metals in the order Cs+>Rb+>K+>Na+>Li+. The reaction is endothermic and entropy driven. Monovalent cations are displaced by other monovalent cations. Divalent cations and some drugs (e. g., cocaine) displace monovalent cations more strongly. (3) Divalent cations bind to membranes (and to lecithin micelles) at four distinct sites, having apparent association constants between 50 and 0.2mm –1. The characteristics of the titration suggest that only one species of binding site is present at any one time, and open the possibility that structural transitions of the unassociated coordination sites may be induced by divalent cation binding. Divalent cation binding at the weakest site (like monovalent cation binding) is endothermic and entropy driven. At the next stronger site, the reaction is exothermic. Monovalent cations affect divalent cation binding by reducing the activity coefficient: they do not appear to displace divalent cations from their binding sites.  相似文献   

2.
Characterization of metal ion-binding sites in bacteriorhodopsin   总被引:12,自引:0,他引:12  
We have investigated the effects of the binding of various metal ions to cation-free bacteriorhodopsin ("blue membrane"). The following have been measured: shift of the absorption maximum from 603 to 558 nm (blue to purple transition), binding isotherms, the release of H+ upon binding, and the decay of the deprotonated intermediate of the photocycle, M412. We find that all cations of the lanthanide series, as well as the alkali and alkali earth metals earlier investigated, are able to bring about the absorption shift, whereas Hg2+ and Pt4+ are not. Sigmoidal spectroscopic titration curves and nonsigmoidal binding curves suggest that there are two high affinity sites for cations in bacteriorhodopsin. Binding to the site with the second highest affinity is responsible for the absorption shift. Divalent cation binding to blue membrane causes release of about six protons, whereas higher numbers of protons are released by trivalent cations, suggesting that the shift of absorption maximum involves proton release from carboxyl group(s). The metal ion bound to this site must be surrounded by carboxyl oxygen atoms acting together as a multidentate ligand with a specific geometry because multivalent ions are effective only when capable of octahedral coordination. Lanthanide ions dramatically inhibit M412 decay at pH above 6.3, an effect probably due to binding to lipid phosphoryl groups.  相似文献   

3.
The properties of a simple model for solvation in mixed solvents are explored in this paper. The model is based on the supposition that solvent replacement is a simple one-for-one substitution reaction at macromolecular sites which are independent of one another. This leads to a new form for the binding polynomial in which all terms are associated with ligand interchange rather than ligand addition. The principal solvent acts as one of the ligands. Thermodynamic analysis then shows that thermodynamic binding (i.e., selective interaction) depends on the properties of K'-1, whereas stoichiometric binding (site occupation) depends on K'. K' is a 'practical' interchange equilibrium constant given by (f3/f1)K, where K is the true equilibrium constant for the interchange of components 3 and 1 on the site and f3 and f4 denote their respective activity coefficients on the mole fraction scale. Values of K' less than unity lead to negative selective interaction. It is selective interaction and not occupation number which determines the thermodynamic effects of solvation. When K' greater than 100 on the mole fraction scale or K' greater than 2 on the molality scale (in water), the differences between stoichiometric binding and selective interaction become less than 1%. The theory of this paper is therefore necessary only for very weak binding constants. When K'-1 is small, large concentrations of the added solvent component are required to produce a thermodynamic effect. Under these circumstances the isotherms for the selective interaction and for the excess (or transfer) free energy are strongly dependent on the behavior of the activity coefficients of both solvent components. Two classes of behavior are described depending on whether the components display positive or negative deviations from Raoult's law. Examples which are discussed are aqueous solutions of urea and guanidinium chloride for positive deviations and of sucrose and glucose for negative deviations. Examination of the few studies which have been reported in the literature shows that most of the qualitative features of the stabilization of proteins by sugars and their destabilization by urea and guanidinium chloride are faithfully represented with the model. This includes maxima in the free energy of stabilization and destabilization, decreased and zero selective interaction at high concentrations, etc. These phenomena had no prior explanation. Deficiencies in the model as a representation of solvation in aqueous solution are discussed in the appendix.  相似文献   

4.
The properties of the cGMP-dependent channel present in membrane vesicles prepared from intact isolated bovine rod outer segments (ROS) were investigated with the optical probe neutral red. The binding of neutral red is sensitive to transport of cations across vesicular membranes by the effect of the translocated cations on the surface potential at the intravesicular membrane/water interface (Schnetkamp, P. P. M. J. Membr. Biol. 88: 249-262). Only 20-25% of ROS membrane vesicles exhibited cGMP-dependent cation fluxes. The cGMP-dependent channel in bovine ROS carried currents of alkali and earth alkali cations, but not of organic cations such as choline and tetramethylammonium; little discrimination among alkali cations (K greater than Na = Li greater than Cs) or among earth alkali cations (Ca greater than Mn greater than Sr greater than Ba = Mg) was observed. The cation dependence of cGMP-induced cation fluxes could be reasonably well described by a Michaelis-Menten equation with a dissociation constant for alkali cations of about 100 mM, and a dissociation constant for Ca2+ of 2 mM. cGMP-induced Na+ fluxes were blocked by Mg2+, but not by Ca2+, when the cations were applied to the cytoplasmic side of the channel. cGMP-dependent cation fluxes showed a sigmoidal dependence on the cGMP concentration with a Hill coefficient of 2.1 and a dissociation constant for cGMP of 92 microM. cGMP-induced cation fluxes showed two pharmacologically distinct components; one component was blocked by both tetracaine and L-cis diltiazem, whereas the other component was only blocked by tetracaine.  相似文献   

5.
Dissociation and reassociation of rabbit skeletal muscle myosin.   总被引:2,自引:0,他引:2  
J Wikman-Coffelt  S Srivastava  D T Mason 《Biochimie》1979,61(11-12):1309-1314
Whereas dissociation of rabbit skeletal muscle myosin light chains occurs at an increased temperature (25 degrees) and in the absence of divalent cations, reassociation of the myosin oligomer requires a low temperature (4 degrees C) and the presence of divalent cations, thus resulting in the original light to heavy chain stoichiometry. With a 5-10 per cent release of alkali light chains, LC1 and LC3, and a 50 per cent dissociation of the Ca2+ binding light chain, LC2, there is no significant decrease in myosin ATPase activity irrespective of the cation activator, however, there is an approximate 15-20 per cent decrease in actomyosin ATPase activity. With reassociation of the myosin oligomer, actomyosin ATPase activity is partially restored as well as the original number of Ca2+ binding sites.  相似文献   

6.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

7.
With microtubule-associated proteins (MAPs) BeSO4 and MgSO4 stimulated tubulin polymerization as compared to a reaction mixture without exogenously added metal ion, while beryllium fluoride had no effect (E. Hamel et al., 1991, Arch. Biochem. Biophys. 286, 57-69). Effects of both cations were most dramatic at GTP concentrations in the same molar range as the tubulin concentration. We have now compared effects of beryllium and magnesium on tubulin-nucleotide interactions in both unpolymerized tubulin and in polymer. Polymer formed with magnesium had properties similar to those of polymer formed without exogenous cation, except for a 20% lower stoichiometry of exogenous GTP incorporated into the latter. In both polymers the incorporated GTP was hydrolyzed to GDP. Stoichiometry of GTP incorporation into polymers formed with beryllium or magnesium was identical, but much of the GTP in the beryllium polymer was not hydrolyzed. The beryllium polymer was more stable than the magnesium polymer. Beryllium also differed from magnesium in only weakly enhancing the binding of GTP in the exchangeable site of unpolymerized tubulin, while neither cation affected GDP exchange at the site. If both cations were present in a reaction mixture, polymer stability was little changed from that of the beryllium polymer, but most of the GTP incorporated into polymer was hydrolyzed. Six additional metal salts (AlCl3, CdCl2, CoCl2, MnCl2, SnCl2, and ZnCl2) also stimulated MAP-dependent tubulin polymerization, but enhanced polymer stability did not correlate with polymer GTP content. We postulate that enhanced polymer stability is a consequence of cation binding directly to tubulin and/or polymer while deficient GTP hydrolysis in the presence of beryllium, as well as aluminum and tin, is a consequence of tight binding of cation to GTP in the exchangeable site.  相似文献   

8.
The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to probe the divalent cation binding site. The channel activation kinetics were greatly (three- to fourfold) slowed by low (2-5 mM) concentrations of Zn; deactivation kinetics were only slightly affected. These effects of Zn were inhibited by low solution pH in a manner consistent with competition between Zn and H ions for a single site. The apparent inhibitory pK for this site was near 7.2. Treatment of the neurons with specific amino acid reagents implicated amino, but no histidyl or sulfhydryl, residues in divalent cation binding.  相似文献   

9.
Background Cl channels in neurons and skeletal muscle are significantly permeable for alkali cations when tested with asymmetrical concentrations of the same salt. Both anion and cation permeation were proposed to require binding of an alkali cation with the pore (Franciolini, F., and W. Nonner. 1987. Journal of General Physiology. 90:453-478). We tested this hypothesis by bilaterally substituting large alkali cations for Na and found no significant changes of unitary conductance at 300 mM symmetrical concentrations. In addition, all organic cations examined were permeant in a salt gradient test (1,000 mM internal@300 mM external), including triethanolamine, benzyltrimethylamine, and bis-tris-propane (BTP, which is divalent at the tested pH of 6.2). Inward currents were detected following substitution of internal NaCl by the Na salts of the divalent anions of phosphoric, fumaric, and malic acid. Zero-current potentials in gradients of the Na and BTP salts of varied anions (propionate, F, Br, nitrate) that have different permeabilities under bi-ionic conditions, were approximately constant, as if the permeation of either cation were coupled to the permeation of the anion. These results rule out our earlier hypothesis of anion permeation dependent on a bound alkali cation, but they are consistent with the idea that the tested anions and cations form mixed complexes while traversing the Cl channel.  相似文献   

10.
Kim OH  Kim YO  Shim JH  Jung YS  Jung WJ  Choi WC  Lee H  Lee SJ  Kim KK  Auh JH  Kim H  Kim JW  Oh TK  Oh BC 《Biochemistry》2010,49(47):10216-10227
Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the β-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.  相似文献   

11.
C Zentz  S el Antri  S Pin  R Cortes  A Massat  M Simon  B Alpert 《Biochemistry》1991,30(11):2804-2810
The effects of mixed solvents on the ligand binding site in hemoglobin have been investigated though three spectroscopic techniques. Two classes of organic solvents (amides and alcohols) known to increase or decrease the hemoglobin affinity have been chosen for this study. The analysis of the iron CO stretching band shows that the ligand binding sites of alpha CO and beta CO subunits inside the alpha 2 beta 2 hemoglobin tetramer exhibit multiple conformations. From the circular dichroism and X-ray absorption near-edge structure data, it appears that no core deformation or heme reorientation occur with the affinity changes. The iron-ligand average bond angle is the sole parameter that depends on the external solvent. Since cosolvents seem to affect the dynamics rather than the hindrance of the heme cavity, we suggest that the protein affinity could be associated with a hierarchy of subtle dynamic states.  相似文献   

12.
Mn(II) EPR binding studies with reduced acyl-carrier protein (ACP-SH) strongly suggest the presence of two relatively high-affinity manganese-binding sites (average Kd/site approximately 80 microM) at physiological pH. Lowering the pH or titrating with sodium chloride reduces the average number of bound divalent cations and decreases the binding affinity. This is consistent with the idea that anionic ligand(s), e.g. the carboxylate of glutamic or aspartic acid, on the protein are involved in manganese ion coordination. At pH values above 8.0, binding affinity is also reduced, whereas the average number of bound metal ions increases to about five at pH 8.5. By interacting weakly with divalent cations (average Kd/site approximately 1 mM), octanoyl acyl-carrier protein (OcoACP) exhibits dramatically different metal-ion-binding properties compared to ACP-SH. Calcium and magnesium can compete in either ACP species for manganese binding. Photochemically-induced dynamic nuclear polarisation 1H-NMR experiments strongly suggest that ACP-SH and OcoACP undergo at pH-induced conformational change between pH 5.5 and pH 7.0, and that divalent cations stabilize the protein against such pH-induced structural perturbations.  相似文献   

13.
Characterization of ionomycin as a calcium ionophore.   总被引:12,自引:0,他引:12  
The ionophorous properties of a new antibiotic, ionomycin, have been studied. It was found that the antibiotic is capable of extracting calcium ion from the bulk of an aqueous phase into an organic phase. The antibiotic also acts as a mobile ion carrier to transport the cation across a solvent barrier. The divalent cation selectivity order for ionomycin as determined by ion competition experiments was found to be: Ca greater than Mg greater than Sr = Ba, where the binding of strontium and barium by the antibiotic is insignificant. The antibiotic also binds La3+ to some extent, but its complexation with monovalent alkali metal ions is negligible. Measurement of the binding of ionomycin with Ca2+ indicates that ionomycin complexes and transports calcium ion in a one to one stoichiometry.  相似文献   

14.
In our previous work, we proposed that desolvation and resolvation of the binding sites of proteins can serve as the slowest steps during ligand association and dissociation, respectively, and tested this hypothesis on two protein‐ligand systems with known binding kinetics behavior. In the present work, we test this hypothesis on another kinetically‐determined protein‐ligand system—that of p38α and eight Type II BIRB 796 inhibitor analogs. The kon values among the inhibitor analogs are narrowly distributed (104kon ≤ 105 M?1 s?1), suggesting a common rate‐determining step, whereas the koff values are widely distributed (10?1koff ≤ 10?6 s?1), suggesting a spectrum of rate‐determining steps. We calculated the solvation properties of the DFG‐out protein conformation using an explicit solvent molecular dynamics simulation and thermodynamic analysis method implemented in WaterMap to predict the enthalpic and entropic costs of water transfer to and from bulk solvent incurred upon association and dissociation of each inhibitor. The results suggest that the rate‐determining step for association consists of the transfer of a common set of enthalpically favorable solvating water molecules from the binding site to bulk solvent. The rate‐determining step for inhibitor dissociation consists of the transfer of water from bulk solvent to specific binding site positions that are unfavorably solvated in the apo protein, and evacuated during ligand association. Different sets of unfavorable solvation are evacuated by each ligand, and the observed dissociation barriers are qualitatively consistent with the calculated solvation free energies of those sets.  相似文献   

15.
G M Ananyev  A Murphy  Y Abe  G C Dismukes 《Biochemistry》1999,38(22):7200-7209
The size and charge density requirements for metal ion binding to the high-affinity Mn2+ site of the apo-water oxidizing complex (WOC) of spinach photosystem II (PSII) were studied by comparing the relative binding affinities of alkali metal cations, divalent metals (Mg2+, Ca2+, Mn2+, Sr2+), and the oxo-cation UO22+. Cation binding to the apo-WOC-PSII protein was measured by: (1) inhibition of the rate and yield of photoactivation, the light-induced recovery of O2 evolution by assembly of the functional Mn4Ca1Clx, core from its constituent inorganic cofactors (Mn2+, Ca2+, and Cl-); and by (2) inhibition of the PSII-mediated light-induced electron transfer from Mn2+ to an electron acceptor (DCIP). Together, these methods enable discrimination between inhibition at the high- and low-affinity Mn2+ sites and the Ca2+ site of the apo-WOC-PSII. Unexpectedly strong binding of large alkali cations (Cs+ > Rb+ > K+ > Na+ > Li+) was found to smoothly correlate with decreasing cation charge density, exhibiting one of the largest Cs+/Li+ selectivities (>/=5000) for any known chelator. Both photoactivation and electron-transfer measurements at selected Mn2+ and Ca2+ concentrations reveal that Cs+ binds to the high-affinity Mn2+ site with a slightly greater affinity (2-3-fold at pH 6.0) than Mn2+, while binding about 10(4)-fold more weakly to the Ca2+-specific site required for reassembly of functional O2 evolving centers. In contrast to Cs+, divalent cations larger than Mn2+ bind considerably more weakly to the high-affinity Mn2+ site (Mn2+ > Ca2+ > Sr2+). Their affinities correlate with the hydrolysis constant for formation of the metal hydroxide by hydrolysis of water: Me2+aq --> [MeOH]+aq + H+aq. Along with the strong stimulation of the rate of photoactivation by alkaline pH, these metal cation trends support the interpretation that [MnOH]+ is the active species that forms upon binding of Mn2+aq to apo-WOC. Further support for this interpretation is found by the unusually strong inhibition of Mn2+ photooxidation by the linear uranyl cation (UO22+). The intrinsic binding constant for [MnOH]+ to apo-WOC was determined using a thermodynamic cycle to be K = 4.0 x 10(15) M-1 (at pH 6.0), consistent with a high-affinity, preorganized, multidentate coordination site. We propose that the selectivity for binding [MnOH]+, a linear low charge-density monocation, vs symmetrical Me2+ dications is functionally important for assembly of the WOC by enabling: (1) discrimination against higher charge density alkaline earth cations (Mg2+ and Ca2+) and smaller alkali metal cations (Na+ and K+) that are present in considerably greater abundance in vivo, and thus would suppress photoactivation; and (2) higher affinity binding of the one Ca2+ ion or the remaining three Mn2+ ions via coordination to form mu-hydroxo-bridged intermediates, apo-WOC-[Mn(mu-OH)2Mn]3+ or apo-WOC-[Mn(mu-OH)Ca]3+, during subsequent assembly steps of the native Mn4Ca1Clx core. In contrast to more acidic Me2+ divalent ion inhibitors of the high-affinity Mn2+ site, like Ca2+ and Sr2+, Cs+ does not accelerate the decay of the first light-induced intermediate, IM1, formed during photoactivation (attributed to apo-WOC-[Mn(OH)2]+). The inability of Cs+ to promote decay of IM1, despite having comparable affinity as Mn2+, is consistent with its considerably weaker Lewis acidity, resulting in the reprotonation of IM1 by water becoming the rate-limiting step for decay prior to displacement of Mn2+. All four different lines of evidence provide a self-consistent picture indicating that the initial step in assembly of the WOC involves high-affinity binding of [MnOH]+.  相似文献   

16.
The A-domains within integrin beta subunits contain three metal sites termed the metal ion-dependent adhesion site (MIDAS), site adjacent to the metal ion-dependent adhesion site (ADMIDAS), and ligand-induced metal-binding site (LIMBS), and these sites are involved in ligand engagement. The selectivity of these metal sites and their role in ligand binding have been investigated by expressing a fragment corresponding to the beta3 A-domain, beta3-(109-352), and single point mutants in which each of the cation-binding sites has been disabled. Equilibrium dialysis experiments identified three Mn2+- and two Ca2+-binding sites with the LIMBS being the site that did not bind Ca2+. Although the ADMIDAS could bind Ca2+, it did not bind Mg2+. These results indicate that the Ca2+-specific site that inhibits ligand binding is the ADMIDAS. Two different assay systems, surface plasmon resonance and a microtiter plate assay, demonstrated that the beta3 A-domain fragment bound fibrinogen in the presence of 0.1 mm Ca2+ but not in 3 mm Ca2+. This behavior recapitulated the effects of Ca2+ on fibrinogen binding to alphavbeta3 but not alphaIIbbeta3. Disabling any of the three cation-binding sites abrogated fibrinogen binding. These results indicate that the specificities of the three metal-binding sites for divalent cations are distinct and that each site can regulate the ligand binding potential of the beta3 A-domain.  相似文献   

17.
R Strom  W E Blumberg  R E Dale    C Crifo 《Biophysical journal》1976,16(11):1297-1314
The variations of optical density and fluorescence of lucensomycin are good indices of the binding of this polyenic antibiotic to membranes. The former parameter reflects more generally the binding to any site present in the membrane, while the latter is more specific for binding to cholesterol. The chromophore of the lucensomycin-cholesterol complex has a relatively long lifetime, is almost immobile in the membrane, and is not accessible to water-soluble fluorescence-quenching agents. The stoichiometry, evaluated fluorometrically, corresponds to about two cholesterol molecules per polyene. In colloidal cholesterol suspensions, the extent of binding as a function of free polyene concentration is described by rectangular hyperbolae, the dissociation constant being, however, dependent on the sterol concentration. In erythrocyte membranes, on the other hand, and even more markedly in model systems containing appropriate solvents, the combination between lucensomycin and the sterol sites is described by sigmoid titration curves, indicative of cooperative effects, and probably due to solvation of cholesterol.  相似文献   

18.
The kinetic properties of the activation by monovalent cations of the amidolytic activity of bovine des-1-41 light chain activated protein C have been examined. With the cations Cs+, K+, Li+, and Tl+, a single cation site, or class of sites, has been found to be responsible for the stimulation observed, with kinetic Ka values of 98-110, 180-210, 300-310, and 14-16 mM, respectively. The mechanism proposed for participation of these cations in the enzyme reaction involves an ordered addition, with the binding of cation preceding the binding of the amide substrate. On the other hand, the kinetic properties of this same activation by Na+ are consistent with either two cation sites, or classes of sites, of importance. Once again, however, the mechanism of the reaction appears to be of the ordered type, with cation binding occurring prior to substrate binding.  相似文献   

19.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

20.
The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号