首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

2.
Wang D  Gao H  Zhang R  Ma X  Zhou Y  Cheng J 《BioTechniques》2003,35(2):300-2, 304, 306 passim
Efficiencies of mismatch discrimination using size-varied capture probes were examined at various hybridization temperatures. The probes were 17, 15, 13, 11, 9, and 7 nucleotides long and contained single-base mismatches at their 3' ends. The optimal signal intensity and efficiency of base stacking hybridization on mismatch discrimination were observed for capture probes with a melting temperature (Tm) value of 36 degrees C, in the detection of DNA sequence variations at 40 degrees C. We employed asymmetric PCR to prepare single-stranded target DNA labeled with a fluorescent dye, and the PCR product was hybridized on the DNA microarray with no further purification. Our efforts have enhanced the sensitivity and simplified the procedures of base stacking hybridization on mismatch discrimination. As a model experiment, this improved technology was used to identify plasmid templates of human leukocyte antigen (HLA)-A alleles 2601, 2902, and 0206 on oligonucleotide microarrays. It is now possible to apply this simple, rapid, sensitive, and reliable base stacking hybridization technology to detect DNA sequence variations on microarrays in clinical diagnosis and other applications.  相似文献   

3.
Owczarzy R  You Y  Groth CL  Tataurov AV 《Biochemistry》2011,50(43):9352-9367
Locked nucleic acids (LNA; symbols of bases, +A, +C, +G, and +T) are introduced into chemically synthesized oligonucleotides to increase duplex stability and specificity. To understand these effects, we have determined thermodynamic parameters of consecutive LNA nucleotides. We present guidelines for the design of LNA oligonucleotides and introduce free online software that predicts the stability of any LNA duplex oligomer. Thermodynamic analysis shows that the single strand-duplex transition is characterized by a favorable enthalpic change and by an unfavorable loss of entropy. A single LNA modification confines the local conformation of nucleotides, causing a smaller, less unfavorable entropic loss when the single strand is restricted to the rigid duplex structure. Additional LNAs adjacent to the initial modification appear to enhance stacking and H-bonding interactions because they increase the enthalpic contributions to duplex stabilization. New nearest-neighbor parameters correctly forecast the positive and negative effects of LNAs on mismatch discrimination. Specificity is enhanced in a majority of sequences and is dependent on mismatch type and adjacent base pairs; the largest discriminatory boost occurs for the central +C·C mismatch within the +T+C+C sequence and the +A·G mismatch within the +T+A+G sequence. LNAs do not affect specificity in some sequences and even impair it for many +G·T and +C·A mismatches. The level of mismatch discrimination decreases the most for the central +G·T mismatch within the +G+G+C sequence and the +C·A mismatch within the +G+C+G sequence. We hypothesize that these discrimination changes are not unique features of LNAs but originate from the shift of the duplex conformation from B-form to A-form.  相似文献   

4.
Biosensors and microarrays are powerful tools for species detection and monitoring of microorganisms. A reliable identification of microorganisms with probe-based methods requires highly specific and sensitive probes. The introduction of locked nucleic acid (LNA) promises an enhancement of specificity and sensitivity of molecular probes. In this study, we compared specificity and sensitivity of conventional probes and LNA modified probes in two different solid phase hybridisation methods: sandwich hybridisation on biosensors and on DNA microarrays. In combination with DNA-microarrays, the LNA probes displayed an enhancement of sensitivity, but also gave more false-positive signals. With the biosensor, the LNA probes showed neither signal enhancement nor discrimination of a single mismatch. In all cases, conventional DNA probes showed equal or better results than LNA probes. In conclusion, LNA technology may have great potential in methods that use probes in suspension and in gene expressions studies, but under certain solid surface-hybridisation applications, they do not improve signal intensity.  相似文献   

5.
A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled "stacking oligonucleotide," and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the "capture probe" and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3'-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivatized glass. "Operating parameters" examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration: 1. Optimal mismatch discrimination with 9-mer probes occurs at 45 degrees C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45 degrees C. 2. At 25 degrees C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch. 3. The presence of a phosphate group on the 5'-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied. These results provide a motivation for continued development of the stacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996) Proc. Natl. Acad. Sci. USA 93, 4913-4918; Parinov et al. (1996) Nucleic Acids Res. 24, 2998-3004).  相似文献   

6.
Genotyping of single nucleotide polymorphisms (SNPs) in large populations presents a great challenge, especially if the SNPs are embedded in GC-rich regions, such as the codon 112 SNP in the human apolipoprotein E (apoE). In the present study, we have used immobilized locked nucleic acid (LNA) capture probes combined with LNA-enhancer oligonucleotides to obtain efficient and specific interrogation of SNPs in the apoE codons 112 and 158, respectively. The results demonstrate the usefulness of LNA oligonucleotide capture probes combined with LNA enhancers in mismatch discrimination. The assay was applied to a panel of patient samples with simultaneous genotyping of the patients by DNA sequencing. The apoE genotyping assays for the codons 112 and 158 SNPs resulted in unambiguous results for all patient samples, concurring with those obtained by DNA sequencing.  相似文献   

7.
A single square voltage pulse applied to metal electrodes underneath a silicon dioxide film upon which DNA probes are immobilized allows the discrimination of DNA targets with a single base mismatch during hybridization. Pulse duration, magnitude and slew rate of the voltage pulse are all key factors controlling the rates of electric field assisted hybridization. Although pulses with 1 V, lasting less than 1 ms and with a rise/fall times of 4.5 ns led to maximum hybridization of fully complementary strands, lack of stringency did not allow the discrimination of single base mismatches. However, by choosing pulse conditions that are slightly off the optimum, the selectivity for discriminating single base mismatches could be improved up to a factor approximately 5 when the mismatch was in the middle of the strand and up to approximately 1.5 when the mismatch was on the 5'-end and. These results demonstrate that hybridization with the appropriate electric field pulse provides a new, site-specific, approach to the discrimination of single nucleotide polymorphisms in the sub-millisecond time scale, for addressable DNA microarrays.  相似文献   

8.
9.

Background  

The high binding specificity of short 10 to 30 mer oligonucleotide probes enables single base mismatch (MM) discrimination and thus provides the basis for genotyping and resequencing microarray applications. Recent experiments indicate that the underlying principles governing DNA microarray hybridization – and in particular MM discrimination – are not completely understood. Microarrays usually address complex mixtures of DNA targets. In order to reduce the level of complexity and to study the problem of surface-based hybridization with point defects in more detail, we performed array based hybridization experiments in well controlled and simple situations.  相似文献   

10.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

11.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

12.
We report on a simple approach to enhance solid-phase hybridization-based single base mismatch discrimination at high ionic strength based on the deliberate insertion of a natural DNA base mismatch in the surface-tethered probe. A large drop in hybridization signal of single base mismatched alleles using the designed probe as compared with the conventional probe, from 80% to less than 25% of the signal obtained with the fully complementary, non-mutation-containing sequence, when using colorimetric detection was further improved to 20% when using electrochemical detection, attributable to a difference of spacing of immobilized probes. Finally, the designed probe was used for the electrochemical detection of the DQA1*05:05 allele amplified from real human blood samples.  相似文献   

13.
Temperature-gradient gel electrophoresis (TGGE) was employed to determine the thermal stabilities of 48 DNA fragments that differ by single base pair mismatches. The approach provides a rapid way for studying how specific base mismatches effect the stability of a long DNA fragment. Homologous 373 bp DNA fragments differing by single base pair substitutions in their first melting domain were employed. Heteroduplexes were formed by melting and reannealing pairs of DNAs, one of which was 32P-labeled on its 5'-end. Product DNAs were separated based on their thermal stability by parallel and perpendicular temperature-gradient gel electrophoresis. The order of stability was determined for all common base pairs and mismatched bases in four different nearest neighbor environments; d(GXT).d(AYC), d(GXG).d(CYC), d(CXA).d(TYG), and d(TXT).d(AYA) with X,Y = A, T, C, or G. DNA fragments containing a single mismatch were destabilized by 1 to 5 degrees C with respect to homologous DNAs with complete Watson-Crick base pairing. Both the bases at the mismatch site and neighboring stacking interactions influence the destabilization caused by a mismatch. G.T, G.G and G.A mismatches were always among the most stable mismatches for all nearest neighbor environments examined. Purine.purine mismatches were generally more stable than pyrimidine.pyrimidine mispairs. Our results are in very good agreement with data where available from solution studies of short DNA oligomers.  相似文献   

14.
We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.  相似文献   

15.
In this paper, we report a new method for the SNP analysis by using a chemical ligation (CL) technique on CPG plates with high coupling efficiency. This method showed markedly high match/mismatch discrimination ability. Particularly, replacement of thymidine with 2-thiothymidine in DNA probes used in the CL technology resulted in significant improvement of the base discrimination ability of the thymine base in this system.  相似文献   

16.
Abstract

LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2′-0, 4′-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional'H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32Å. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3Å. The average twist over the sequence are 35.9° ± 0.3°. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5′-CTLAG-3′ site than in the unmodified 5′-CTLAG-3′ site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

17.
The electrochemistry of DNA films modified with different redox probes linked to DNA through saturated and conjugated tethers was investigated. Experiments feature two redox probes bound to DNA on two surfaces: anthraquinone (AQ)-modified uridines incorporated into thiolated DNA on gold (Au) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-modified uridines in pyrene-labeled DNA on highly oriented pyrolytic graphite (HOPG). The electrochemistry of these labels when incorporated into DNA has been examined in DNA films containing both well matched and mismatched DNA. DNA-mediated electrochemistry is found to be effective for the TEMPO probe linked with an acetylene linker but not for a saturated TEMPO connected through an ethylenediamine linker. For the AQ probe, DNA-mediated electrochemistry is found with an acetylene linker to uridine but not with an alkyl chain to the 5' terminus of the oligonucleotide. Large electrochemical signals and effective discrimination of intervening base mismatches are achieved for the probes connected through the acetylene linkages, while probes connected through saturated linkages exhibit small electrochemical signals associated only with direct surface to probe charge transfer and poor mismatch discrimination. Thus DNA electrochemistry with these probes is dramatically influenced by the chemical nature of their linkage to DNA. These results highlight the importance of effective coupling into the pi-stack for long-range DNA-mediated electrochemistry.  相似文献   

18.
Locked nucleic acids (LNAs) are synthetic nucleic acid analogs that bind to complementary target molecules (DNA, RNA or LNA) with very high affinity. At the same time, this binding affinity is decreased substantially when the hybrids thus formed contain even a single mismatched base pair. We have exploited these properties of LNA probes to develop a new method for single nucleotide polymorphism genotyping. In this method, very short (hexamer or heptamer) LNA probes are labeled with either rhodamine or hexachlorofluorescein (HEX), and their hybridization to target DNAs is followed by measuring the fluorescence polarization (FP) of the dyes. The formation of perfectly complementary double-stranded hybrids gives rise to significant FP increases, whereas the presence of single mismatches results in very small or no changes of this parameter. Multiplexing of the assay can be achieved by using differentially labeled wild-type and mutant specific probes in the same solution. The method is homogeneous, and because of the use of extremely short LNA probes, the generation of a universal set of genotyping reagents is possible.  相似文献   

19.
Oligodeoxyribonucleotides containing N4-methoxycytosine (mo4C), N4-methoxy-5-methylcytosine (mo4m5C) and other base-analogues were synthesised and used to compare the stabilities of duplexes containing mo4C.A and mo4C.G base pairs with those containing normal and mismatch pairs. The Tm values and other thermodynamic parameters are recorded. The otherwise identical duplexes containing a mo4C.A and a mo4C.G base pair have closely similar stabilities to each other and to the corresponding duplexes containing normal base pairs, considerably greater than the stabilities of those containing mismatch pairs. Corresponding observations are recorded in dot-blot experiments using M13 cloned DNA carrying an insert complementary to the oligonucleotides; approximate Td values are given.  相似文献   

20.
Oligonucleotide probes containing locked nucleic acid (LNA) hybridize to complementary single-stranded target DNA sequences with an increased affinity compared to oligonucleotide DNA probes. As a consequence of the incorporation of LNA residues into the oligonucleotide sequence, the melting temperature of the oligonucleotide increases considerably, thus allowing the successful use of shorter LNA probes as allele-specific tools in genotyping assays. In this article, we report the use of probes containing LNA residues for the development of qualitative fluorescent multiplex assays for the detection of single nucleotide polymorphisms (SNPs) in real-time polymerase chain reaction using the 5'-nuclease detection assay. We developed two applications that show the improved specificity of LNA probes in assays for allelic discrimination. The first application is a four-color 5'-nuclease assay for the detection of SNPs for two of the most common genetic factors involved in thrombotic risk, factor V Leiden and prothrombin G20210A. The second application is a two-color assay for the specific detection of the A-to-T tranversion in codon 6 of the beta-globin gene, responsible for sickle cell anemia. Both real-time genotyping assays were evaluated by comparing the performance of our method to that of a reference method and in both cases, we found a 100% concordance. This approach will be useful for research and molecular diagnostic laboratories in situations in which the specificity provided by oligonucleotide DNA probes is insufficient to discriminate between two DNA sequences that differ by only one nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号