首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypotonic dialysis of bovine erythrocytes to 160-180 mosmol/kg produces cells with metastable pores. Cells stored for 3 weeks in a hypotonic dialyzed state can be used to prepare carrier erythrocytes. Pores generated by nonlytic hypotonic conditions are initially greater than 40 A in radius but shrink to less than 20 A with storage beyond 1 week. A metastable pore allows for hemoglobin isolation from hypotonically dialyzed cells.  相似文献   

2.
Hypotonic dialysis of human erythrocytes results in porous cell stability for several days. Hypotonic cells stored for 1 week are essentially normal with respect to the preparation of carrier erythrocytes. Afterward, cells begin to irreversibly hemolyze resulting in decreased cell recoveries and decreased encapsulation percentages of two probes, sucrose and inulin. The holes generated by controlled hypotonic dialysis (100 mOsm/kg) are unlike the single rupture hole generated by dialysis to 10-20 mOsm/kg. The minimum pore size of resealed, annealed carrier cells is confirmed to be less than 5.2 A.  相似文献   

3.
Kx is a quantitatively minor blood group protein of human erythrocytes which is thought to be a membrane transporter. In the red cell membrane, Kx forms a complex stabilized by a disulfide bond with the Kell blood group membrane protein which might function as a metalloprotease. The palmitoylation status of these proteins was studied by incubating red cells with [3H] palmitic acid. Purification of the Kell-Kx complex, by immunochromatography on an immobilized human monoclonal antibody of Kell blood group specificity demonstrated that the Kx but not the Kell protein is palmitoylated. Six cysteines in Kx are predicted to be intracytoplasmic and might be targets for palmitoylation. Three of these cysteines are present in a portion of sequence which is predicted to form an amphipathic alpha helix. Palmitoylation of one or several of these cysteines might contribute to anchor the cytoplasmic portion of the Kx protein to the inner surface of red cell membrane.  相似文献   

4.
The membrane trap is a new device for the electroelution of all kinds of charged macromolecules from gels. Instead of dialysis membranes, the membrane trap uses a new membrane. Retention of macromolecules in an electric field by dialysis membranes depends on the presence of sodium dodecyl sulfate (SDS) in the buffer. The new membrane retains all charged macromolecules larger than approximately 5000 Da without adsorbing them, independent of the use of SDS. Here we report the electroelution of five different lipophilic membrane proteins (33 to 193 kDa) of Mycoplasma pneumoniae from preparative SDS-polyacrylamide gels into a 300-microliter recovery volume. After an 8-h elution period, recovery ranged from 80 (193 kDa) to 97% (33 kDa). The "losses" were generally due to proteins still remaining in the gel slice. All of the eluted proteins tested in a dot-blot assay proved to be antigenically active. The advantages of the device described here are easy handling (insertion of membranes, open system), quantitative recovery, and high reproducibility of the elution results.  相似文献   

5.
The hypothesis of a correlation between the effects of temperature on red blood cells hypotonic hemolysis and hypertonic cryohemolysis and two thermotropic structural transitions evidenced by EPR studies has been tested. Hypertonic cryohemolysis of red blood cells shows critical temperatures at 7 degrees C and 19 degrees C. In hypotonic solution, the osmotic resistance increases near 10 degrees C and levels off above 20 degrees C. EPR studies of red blood cell membrane of a 16-dinyloxyl stearic acid spin label show, in the 0-50 degrees C range, the presence of three thermotropic transitions at 8, 20, and 40 degrees C. Treatments of red blood cells with acidic or alkaline pH, glutaraldehyde, and chlorpromazine abolish hypertonic cryohemolysis and reduce the effect of temperature on hypotonic hemolysis. 16-Dinyloxyl stearic acid spectra of red blood cells treated with glutaraldehyde and chlorpromazine show the disappearance of the 8 degrees C transition. Both the 8 degrees C and the 20 degrees C transitions were abolished by acidic pH treatment. The correlation between the temperature dependence of red blood cell lysis and thermotropic breaks might be indicative of the presence of structural transitions producing areas of mismatching between differently ordered membrane components where the osmotic resistance is decreased.  相似文献   

6.
Preparations of sperm membranes (plasma membranes and outer acrosomal membranes) and denuded sperm heads were isolated from macaque sperm, and the PH-20 proteins present were characterized by Western blotting, hyaluronic acid substrate gel analysis, and a microplate assay for hyaluronidase activity. Because we have shown previously that PH-20 is located on the plasma membrane and not on the outer acrosomal membrane, the PH-20 in the membrane preparations was presumed to be plasma membrane PH-20 (PM-PH-20). PM-PH-20 had an apparent molecular weight of 64 kDa and the optimum pH for its hyaluronidase activity was 6.5. The PH-20 associated with denuded sperm heads was localized by immunogold label to the persistent inner acrosomal membrane (IAM) and was presumed to be IAM-PH-20, which included a major 64 kDa form and a minor 53 kDa form. The 53 kDa form was not detected in extracts of denuded sperm heads from acrosome intact sperm that were boiled in nonreducing sample buffer, but was present in extracts of sperm heads from acrosome reacted sperm and in the soluble material released during the acrosome reaction, whether or not the samples were boiled. Substrate gel analysis showed that the hyaluronidase activity of the 53 kDa form of PH-20 was greatest at acid pH, and this activity was probably responsible for the broader and lower optimum pH of IAM hyaluronidase activity. When hypotonic treatment was used to disrupt the sperm acrosome and release the acrosomal contents, less than 0.05% of the total hyaluronidase activity was released. The PH-20 protein released by hypotonic treatment was the 64 kDa form and not the 53 kDa form, suggesting that its source might be the disrupted plasma membranes. Our experiments suggest that the soluble form of hyaluronidase, which is released at the time of the acrosome reaction, is derived from the IAM. This soluble hyaluronidase is composed of both the 64 kDa form and 53 kDa form of PH-20. The 53 kDa form appears to be processed from the 64 kDa form at the time of the acrosome reaction. Mol. Reprod. Dev. 48:356–366, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Erythrocytes could be used as physiological carriers of active compounds. Several substances can be loaded into erythrocytes by hypotonic dialysis methods. Furthermore, carrier erythrocyte membrane can be chemically modified in order to promote increased arrival of the loaded compound to macrophages. In this work, we have prepared erythrocytes loaded with etoposide. We found conditions to obtain high etoposide encapsulation yields with minor alteration of some cell parameters of these carrier erythrocytes. Etoposide loaded into erythrocytes is mainly localised in the cytoplasmic compartment. Membrane modification of etoposide-loaded erythrocytes with band 3 crosslinkers produces an increased incorporation of the drug into macrophages mainly by phagocytosis process. The toxic effect of etoposide conveyed in these carrier erythrocytes determined as DNA fragmentation in macrophages was higher than that shown by free etoposide added at the same concentration in the culture medium to macrophages. These results seem to indicate the usefulness of this model to deliver this anti-tumour compound to macrophages, which might be useful in therapy.  相似文献   

8.
Cells can be transiently permeabilized by exposing them briefly to an intense electric field (a process called "electroporation"), but it is not clear what structural changes the electric field induces in the cell membrane. To determine whether membrane pores are actually created in the electropermeabilized cells, rapid-freezing electron microscopy was used to examine human red blood cells which were exposed to a radio-frequency electric field. Volcano-shaped membrane openings appeared in the freeze-fracture faces of electropermeabilized cell membranes at intervals as short as 3 ms after the electrical pulse. We suggest that these openings represent the membrane pathways which allow entry of macromolecules (such as DNA) during electroporation. The pore structures rapidly expand to 20-120 nm in diameter during the first 20 ms of electroporation, and after several seconds begin to shrink and reseal. The distribution of pore sizes and pore dynamics suggests that interactions between the membrane and the submembrane cytoskeleton may have an important role in the formation and resealing of pores.  相似文献   

9.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

10.
Sheep carrier erythrocytes were prepared from dialyzed cells stored for 3 weeks. The initial pore size in freshly dialyzed cells exceeds the Stokes radius of that for hemoglobin. Hypotonically dialyzed erythrocytes are then very stable in a porous state. Two probes of different Stokes radius were used to determine the relative size of the pores. Sheep erythrocytes entrap inulin to a greater extent than sucrose, a much smaller molecule. With storage, a greater fraction of dialyzed cells become impermeable to inulin than to sucrose indicative of pore size greater than 5.2 less than 20 A. Since hemoglobin content did not change relative to storage, the pore size was less than the Stokes radius of hemoglobin. Pores generated by controlled hypotonic dialysis are unlike the single rupture pore found in erythrocyte ghosts.  相似文献   

11.
Gemini (dimeric) surfactant perturbation of the human erythrocyte   总被引:1,自引:0,他引:1  
We studied the ability of di-cationic gemini surfactantsdi (amphiphiles), i.e. 1,4-butanediammonium-N,N-dialkyl-N,N,N',N'-tetramethyl bromides (Di-Cm-di-QAS (s = 4), where m = 8, 11, 13, 16 and s = the number of alkyl groups in the spacer) to induce shape alteration, vesiculation, haemolysis and phosphatidylserine exposure in human erythrocytes, and to protect erythrocytes against hypotonic haemolysis. At high sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles rapidly induced echinocytic (spiculated) shapes and a release of exovesicles, mainly in the form of tubes, from the cell surface. Following 60 min incubation erythrocytes were sphero-echinocytic and a few cells with invaginations/endovesicles were observed. No phosphatidylserine exposure was detected. The haemolytic potency increased with an increase of the alkyl chain length. At sublytic concentrations the Di-Cm-di-QAS (s = 4) amphiphiles protected erythrocytes against hypotonic haemolysis. It is suggested that the Di-Cm-di-QAS (s = 4) amphiphiles perturb the membrane in a similar way as single-chain cationic amphiphiles, but that they do not easily translocate to the inner membrane leaflet.  相似文献   

12.
A pore-forming protein was detected and purified for the first time from a marine sponge (Tethya lyncurium). The purified protein has a polypeptide molecular mass of 21 kDa and a pI of 6.4. Tethya pore-forming protein (also called Tethya hemolysin) rapidly lysed erythrocytes from a variety of organisms. After binding to target membranes, the hemolysin resisted elution with EDTA, salt or solutions of low ionic strength and hence resembled an integral membrane protein. Erythrocytes could be protected from hemolysis induced by Tethya hemolysin by addition of 30 mM dextran 4 (4-6 kDa; equivalent hydrodynamic diffusion radius, 1.75-2.3 nm) to the extracellular medium, but not by addition of uncharged molecules of smaller size [sucrose, raffinose and poly(ethylene glycol) 1550; equivalent hydrodynamic diffusion radii, 0.46, 0.57 and 1.2 nm, respectively]. This result indicates that hemolysin is able to form stable transmembrane pores with an effective diameter of about 2-3 nm. Treatment of osmotically protected erythrocytes with Tethya hemolysin caused a rapid efflux of intracellular K+ and ATP, and a rapid influx of extracellularly added Ca2+ and sucrose. In negative-staining electron microscopy, target erythrocyte membranes exposed to purified Tethya hemolysin displayed ultrastructural lesions but without visible pores.  相似文献   

13.
Membrane bilayer balance and erythrocyte shape: a quantitative assessment   总被引:5,自引:0,他引:5  
J E Ferrell  K J Lee  W H Huestis 《Biochemistry》1985,24(12):2849-2857
When human erythrocytes are incubated with certain phospholipids, the cells become spiculate echinocytes, resembling red cells subjected to metabolic starvation or Ca2+ loading. The present study examines (1) the mode of binding of saturated phosphatidylcholines and egg lysophosphatidylcholine to erythrocytes and (2) the quantitative relationship between phospholipid incorporation and red cell shape. We find that the phospholipids studied become intercalated into erythrocyte membranes, not simply adsorbed to the cell surface. Spin-labeling and radiolabeling data show that the incorporation of (4 +/- 1) X 10(6) molecules of exogenous phosphatidylcholine per cell converts discocytes to stage 3 echinocytes with about 35 conical spicules. This amount of lipid incorporation is estimated to expand the red cell membrane outer monolayer by 1.7% +/- 0.6%. Calculations of the inner and outer monolayer surface areas of model discocytes and stage 3 echinocytes yield an estimated difference of 0.7% +/- 0.2%.  相似文献   

14.
In a companion paper, the shapes of spectrin deficient mouse erythrocytes were described; in contrast to previous assumptions, spherules with tethered microvesicles rather than true "spherocytes" were found. Thence, spectrin deficient mouse erythrocytes are endowed with an excess of surface area for the given volume but the membrane is assuming a highly positive curvature. Observations during and after the action of enzymes cleaving the red cell surface charge (Neuraminidase, Trypsin, Chymotrypsin) showed that the previously positive membrane curvature, as well as the tendency of the membrane to flow into fingerlike protrusions was completely abolished. The erythrocytes of the spectrin deficient, desialylated mouse erythrocytes assumed a variety of shapes, often discocytic or even stomatocytic, i.e. their membrane presented with negative curvature. However, while these desialylated membranes could be easily deformed (elongated) by shear flow they did not recoil elastically into any definitive configuration after removal of the deforming forces. It is concluded from these observations that spectrin (acting on the inner interface between membrane and cytoplasm) and sialic acid residues (acting on the outer interface between membrane and plasma) exert antagonizing effects on membrane curvature and membrane bending elasticity. Sialic acid residues, strongly charged and situated on the outer side of the cell, produce positive membrane curvature; this observation can most readily be explained by assuming that this mechanical effect is caused by repulsive coulombic forces expanding the outer half of the bilayer. To explain the effect of the spectrin-complex in counteracting positive or in producing negative membrane curvature, a similar expansive coulombic force acting between the highly charged residues has been postulated. Thence, a model for explaining the overall elastic behaviour of the normal mammalian red cell is developed which is based on the assumption of elastic interactions of proteinacous membrane components coupled to the lipid bilayer of the membrane.  相似文献   

15.
Electric fields of a few kV/cm and of duration in microseconds are known to implant pores of limited size in cell membranes. We report here a study of kinetics of pore formation and reversibility of pores. Loading of biologically active molecules was also attempted. For human erythrocytes in an isotonic saline, pores allowed passive Rb+ entry formed within 0.5 microsecond when a 4 kV/cm electric pulse was used. Pores that admitted oligosaccharides were introduced with an electric pulse of a longer duration in an isosmotic mixture of NaCl and sucrose. These pores were irreversible under most circumstances, but they could be resealed in an osmotically balanced medium. A complete resealing of pores that admitted Rb+ took approximately 40 min at 37 degrees C. Resealing of pores that admitted sucrose took much longer, 20 h, under similar conditions. In other cell types, resealing step may be omitted due to stronger membrane structures. Experimental protocols for loading small molecules into cells without losing cytoplasmic macromolecules are discussed.  相似文献   

16.
The functional properties of erythrocytes under development of apoptotic process in these cells were investigated by the low angle light scattering technique. Apoptosis induced by ionomycin was associated with an initial decrease of cell volume and caused formation of echinocytes. After that the cells restored their volume forming rounded erythrocytes with rugged membrane capable to agglomerate with each other. At the late stages of apoptosis, small fragmented cells can be revealed. Preapoptotic red blood cells (at all stages of apoptosis) manifested an enormous tolerance to hypotonic loading, whereas control cells hemolyzed just after reaching a critical volume (∼150 fl). Acidic hemolysis cannot differentiate between control and preapoptotic erythrocytes, the cells being hemolyzed not reaching the critical volume. Placing the control erythrocytes to a medium with ammonia ions instead of sodium ions caused an initial increase of cell volume above the critical point, and then it was also followed by hemolysis. Under ammonia loading, an initial rate of the cell volume growth and a ratio of the hemolyzed cells were significantly reduced in preapoptotic cells.  相似文献   

17.
Self-assembling, pore-forming cytolysins are illustrative molecules for the study of the assembly and membrane insertion of transmembrane pores. Here we purified pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the basidiocarps of Pleurotus ostreatus and studied the pore-forming properties of the cytolysin. Pleurotolysin consisted of non-associated A (17 kDa) and B (59 kDa) components, which cooperatively caused leakage of potassium ions from human erythrocytes and swelling of the cells at nanomolar concentrations, leading to colloid-osmotic hemolysis. Hemolytic assays in the presence of poly(ethylene glycol)s with different hydrodynamic diameters suggested that pleurotolysin formed membrane pores with a functional diameter of 3.8-5 nm. Pleurotolysin-induced lysis of human erythrocytes was specifically inhibited by the addition of sphingomyelin-cholesterol liposomes to the extracellular space. Pleurotolysin A specifically bound to sphingomyelin-cholesterol liposomes and caused leakage of the internal carboxyfluorescein in concert with pleurotolysin B. Experiments including solubilization of pleurotolysin-treated erythrocytes with 2% (w/v) SDS at 25 degrees C and SDS-polyacrylamide gel electrophoresis/Western immunoblotting showed that pleurotolysin A and B bound to human erythrocytes in this sequence and assembled into an SDS-stable, 700-kDa complex. Ring-shaped structures with outer and inner diameters of 14 and 7 nm, respectively, were isolated from the solubilized erythrocyte membranes by a sucrose gradient centrifugation. Pleurotolysin A and B formed an SDS-stable, ring-shaped complex of the same dimensions on sphingomyelin-cholesterol liposomes as well.  相似文献   

18.
Human red blood cells are able to inactivate lipophilic electrophiles by conjugation with reduced glutathione. This metabolic ability was found to be limited by the rate of permeation of the xenobiotic into erythrocytes and by the amount of available reduced glutathione. By a procedure of hypotonic dialysis, isotonic resealing and reannealing human red blood cells were overloaded with increasing amounts of reduced glutathione up to three- to fourfold the normal level without modification of their metabolic functions or of their energetic state. These overloaded erythrocytes were able to conjugate increasing amounts of xenobiotics and to export the resulting conjugates from the cells. These properties of glutathione overloaded erythrocytes are significant for the use of carrier erythrocytes in cases of acute intoxication by lipophilic electrophiles.  相似文献   

19.
Hookworms feed on blood, but the mechanism by which they lyse ingested erythrocytes is unknown. Here we show that Ancylostoma caninum, the common dog hookworm, expresses a detergent soluble, haemolytic factor. Activity was identified in both adult and larval stages, was heat-stable and unaffected by the addition of protease inhibitors, metal ions, chelators and reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein. A closely migrating doublet of hookworm proteins with apparent molecular weights of 60-65 kDa bound to the erythrocyte membrane after lysis of cells using both unlabeled and biotinylated detergent-solubilised hookworm extracts. In addition, separation of detergent-soluble parasite extracts using strong cation-exchange chromatography, resulted in purification of 60-65 kDa proteins with trypsin-sensitive haemolytic activity. Erythrocytes lysed with particulate, buffer-insoluble worm extracts were observed using scanning electron microscopy and appeared as red cell ghosts with approximately 100 nm diameter pores formed in the cell membranes. Red blood cell ghosts remained visible indicating that lysis was likely caused by pore formation and followed by osmotic disruption of the cell.  相似文献   

20.
T Koyama  T Araiso  J Nitta 《Biorheology》1987,24(3):311-317
The dynamics of membrane microstructure was studied as molecular motions of phospholipids for bullfrog erythrocyte ghosts by the DPH fluorescence depolarization technique with a nanosecond fluorometer. The bullfrog erythrocyte ghosts were obtained by hypotonic lysis and collagenase treatment. The constituents of membrane proteins were confirmed by the disk gel electrophoresis. The viscosity of erythrocyte membrane ghosts was estimated to be 3.3 +/- 1.0 at 10 degrees C, and 2.1 +/- 0.1 at 20 degrees C and 1.3 +/- 0.2 at 30 degrees C in the unit of poise and the wobbling angle of lipid molecule was 35 +/- 1, 41 +/- 1 and 43 +/- 1 degree at the respective temperatures on an average and +/- S.D. The viscosity is lower than that of human erythrocytes. The relatively low viscous phospholipid bilayer may be one of the factors for the deformability of bullfrog erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号