首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Green's function technique is applied to a study of breathing modes in a DNA double helix which contains a region of different base pairs from the rest of the double helix. The calculation is performed on a G-C helix in the B conformation with four consecutive base pairs replaced by A-T. The average stretch in hydrogen bonds is found amplified around the A-T base pair region compared with that of poly(dG)-poly(dC). This is likely related to the A-T regions lower stability against hydrogen bond melting. The A-T region may be considered to be the initiation site for melting in such a helix.  相似文献   

2.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

3.
4.
The cytotoxic analogue of thymine, 5-fluorouracil (Uf), is known to be incorporated into DNA in biological systems. This abnormal base has been synthetically incorporated into short DNA oligomers. The ionization of the N-3 proton of this base within DNA oligomers was measured by observation of the 19F chemical shift at varying pH values. The pKa values for the Uf ring of dTpdUfpdT and dApdUfpdA were determined to be 7.84 and 7.9, respectively. The self-complementary 12-mers d(G-C-G-C-A-A-T-Uf-G-C-G-C) and d(C-G-A-T-Uf-A-T-A-A-T-C-G) were synthesized, and 1H NMR was used to compare the helix dynamics and stability of the interstrand imino proton hydrogen bonds with those of the 12-mers d(G-C-G-C-A-A-T-T-G-C-G-C) and d(C-G-A-T-T-A-T-A-A-T-C-G). The N-3 hydrogen bond of the A-Uf base pair was less stable than the corresponding hydrogen bond in A-T base pairs in the same helix, and the A-Uf base pair was less stable than the A-T base pair in the analogous position of the control helix. The observed temperature-dependent dynamics and NMR melting temperatures of the control and dUf-containing oligomers were similar.  相似文献   

5.
The structural and energetic consequences of cytosine methylation in the 5-position on the supercoil-dependent B-Z equilibrium in alternating dC-dG sequences cloned into recombinant plasmids were investigated. The helical parameters determined with the band shift method for right-handed [10.7 base pairs (bp)/turn] and left-handed (12.8 bp/turn) 5MedC-dG inserts were different from the helical repeat values for unmethylated dC-dG inserts (10.5 bp/turn in the right-handed and 11.5 bp/turn in the left-handed form). We analyzed the thermodynamic parameters delta GBZ (free energy difference per base pair between right-handed and left-handed helix structure), delta Gjx (free energy for formation of one B-Z junction), and b (helix unwinding at a junction region) for varying lengths of dC-dG inserts by two-dimensional gel electrophoresis and application of a statistical mechanics model. A comparison of plasmids fully methylated in vitro with HhaI methylase and their unmethylated counterparts revealed that delta Gjx is not significantly changed by cytosine methylation. However, this base modification results in an approximate 3-fold decrease of delta GBZ and an approximate 2-fold decrease of the unwinding b at B-Z junction regions. Analysis of a pair of related plasmids, each containing two dC-dG blocks, revealed qualitatively different transition behaviors. When the two dC-dG blocks were separated by 95 bp of a mixed sequence, they underwent independent B to Z transitions with separate nucleation events and junction formations. When the two blocks were separated by only a 4 bp GATC sequence, only one nucleation event was necessary, and the Z-helix spread across the nonalternating GATC region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The ability of negative supercoiling to induce a left-handed helix in the recombinant plasmid pRW777, which contains a tract of 64 base pairs of almost perfect (dT-dG) . (dC-dA) from the mouse kappa immunoglobin gene, was studied. S1 nuclease recognizes and cleaves within the junction region which must exist adjacent to the (dT-dG)n . (dC-dA)n tract when in a left-handed state. The cleavage pattern indicates conformational flexibility and structural differences between the two existing junctions. The 64-base pair alternating copolymer undergoes the supercoil-induced formation of a left-handed state over the superhelical density range of -0.04 to -0.06, indicating that (dT-dG)n . (dC-dA) sequences form a left-handed helix less readily than (dC-dG)n . (dC-dG)n sequences of equivalent length. However, these supercoil densities are within the range found in vivo. Supercoil relaxation and antibody binding studies confirmed that the (dT-dG)n . (dC-dA)n tract in supercoiled pRW777 was in a left-handed helix.  相似文献   

7.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

8.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

9.
Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA.Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA).poly(dT) regions. The pentapeptide binds 6-7-base-pair sites with a preference for poly(dA).poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A + T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A + T rich binding site.  相似文献   

10.
The melting behavior of polydeoxynucleotide double helices of known structure is analyzed in terms of the thermodynamics of helix stability, taking into account separately those contributions to the transition free energy that are proportional to the numbers of polymer molecules and those that are proportional to the numbers of base pairs formed. From the analysis of the melting transitions of helices having an alternating (d-) A-T, G-C base-pair sequence and containing either single-strand nicks or both nicks and damaged thymine bases, the effects of these structural lesions are assessed; it is concluded that, in a moderately long helix of this sequence (400 base pairs), the initial introduction of one mid-chain doublestrand break or single-strand break produces respectively some 3.5 or 4 times as much depression in the transition temperature (Tm) as does the destruction of a single internal A-T base pair.  相似文献   

11.
12.
It has been shown earlier that the DNA double helix is opened due to a prolonged contact of the DNA molecule with the surface of the mercury electrode. At neutral pH, the opening process is relatively slow (around 100 s), and it is limited to potentials close to -1.2 V (against SCE). The opening of the double helix has been explained by strains in the DNA molecule due to strong repulsion of the negatively charged phosphate residues from the electrode surface where the polynucleotide chain is anchored via hydrophobic bases. Interaction of the synthetic ds polynucleotides with alternating nucleotide sequences/poly(dA-dT).poly (dA-dT), poly (dA-dU).poly (dA-dU), poly (dG-dC).poly (dG-dC)/ and homopolymer pairs/poly (dA).poly (dT), poly (rA).poly (rU) and poly (dG).poly (dC)/ with the hanging mercury drop electrode has been studied. Changes in reducibility of the polynucleotides were exploited to indicate opening of the double helix. A marked difference in the behaviour was observed between polynucleotides with alternating nucleotide sequence and homopolymer pairs: opening of the double-helical structures of the former polynucleotides occurs at a very narrow potential range (less than 100 mV) (region U), while with the homopolymer pairs containing A X T or A X U pairs, the width of this region is comparable to that of natural DNA (greater than 200 mV). In contrast to natural DNA, the region U of homopolymer pairs is composed of two distinct phases. No region U was observed with poly (dG).poly (dC). In polynucleotides with alternating nucleotide sequence, the rate of opening of the double helix is strongly dependent on the electrode potential in region U, while in homopolymer pairs, this rate is less potential-dependent. It has been assumed that the difference in the behaviour between homopolymer pairs and polynucleotides with alternating nucleotide sequence is due to differences in absorbability of the two polynucleotide chains in the molecule of a homopolymer pair (resulting from different absorbability of purine and pyrimidine bases) in contrast to equal adsorbability of both chains in a polynucleotide molecule with alternating nucleotide sequence. It has been shown that the mercury electrode is a good model of biological surfaces (e.g. membranes), and that the nucleotide sequence-dependent opening (unwinding) of the DNA double helix at electrically charged surfaces may play an important role in many biological processes.  相似文献   

13.
We have performed a conformational analysis of DNA double helices with parallel directed backbone strands connected with the second order symmetry axis being at the same time the helix axis. The calculations were made for homopolymers poly(dA).poly(dA), poly(dC).poly(dC), poly(dG) poly(dG), and poly(dT).poly(dT). All possible variants of hydrogen bonding of base pairs of the same name were studied for each polymer. The maps of backbone chain geometrical existence were constructed. Conformational and helical parameters corresponding to local minima of conformational energy of "parallel" DNA helices, calculated at atom-atom approximation, were determined. The dependence of conformational energy on the base pair and on the hydrogen bond type was analysed. Two major conformational advantageous for "parallel" DNA's do not depend much on the hydrogen-bonded base pair type were indicated. One of them coincided with the conformational region typical for "antiparallel" DNA, in particular for the B-form DNA. Conformational energy of "parallel" DNA depends on the base pair type and for the most part is similar to the conformational energy of "antiparallel" B-DNA.  相似文献   

14.
Thermal transition profiles were recorded for a variety of natural and synthetic DNA and double-stranded RNA preparations in the presence of tetramethylammonium (TMA+) and tetraethylammonium (TEA+) cations. Double-stranded RNAs of natural origin, with GC contents of 50% exhibited the same profiles and Tm values as native DNA containing normal bases. Hence the tetraalkylammonium cations liquidate not only the effects of base composition, and the difference in stability between A-T and A-U base pairs (further confirmed by measurements with uracil-containing DNA from phage PBS-2), but also that of the 2'OH. In the presence of TMA+ cations, there is very marked enhancement of the stability of U-U base pairs in poly(rU) and poly(Um). In 2.4 M TEA, the 1:1 complex of poly(G) with poly (C) formed readily and melted reversibly with a Tm as low as 87 degrees C. At concentrations of TMA and TEA for which dTm/dXGC = 0, the Tm values for various phage DNA preparations containing atypical bases (phages T2, T4, phi e, phi W-14, PBS-2) differ appreciably from those with 'normal bases'. Analysis of these findings indicates that the selective interaction of TMA and TEA cations with A-T base pairs occurs in the minor groove of the DNA helix. The overall results show that the action of these quaternary ammonium cations is not due exclusively to preferential binding to A-T base pairs, but must involve other factors, including modifications of solvent structure. They also underline the utility of TMA and TEA solvent systems for placing in evidence transition profiles not accessible in other solvent systems.  相似文献   

15.
When guanine and uracil form hydrogen bonds in the pairing scheme first proposed by Crick one would expect that poly(A,G) will form an unperturbed double helix with poly U at room temperature in a dilute electrolyte solution (0.1 M NaCl). We have demonstrated by Raman- and IR-spectroscopy that the secondary structure of poly(A.G) · poly U is very similar to the structure of poly A · poly U; only the thermal stability of the double helix seems slightly lower than the stability of poly A · poly U, whereas the average helix length is unaffected by the dispersed G · U base pairs. From our input ratio of guanine and adenine we estimate that about every fourth base pair is a wobble pair.  相似文献   

16.
Abstract

We have performed a conformational analysis of DNA double helices with parallel directed backbone strands connected with the second order symmetry axis being at the same time the helix axis. The calculations were made for homopolymers poly(dA) · poly(dA), poly(dC) · poly(dC), poly(dG) poly(dG), and poly(dT) · poly(dT). All possible variants of hydrogen bonding of base pairs of the same name were studied for each polymer. The maps of backbone chain geometrical existence were constructed. Conformational and helical parameters corresponding to local minima of conformational energy of “parallel” DNA helices, calculated at atom-atom approximation, were determined. The dependence of conformational energy on the base pair and on the hydrogen bond type was analysed. Two major conformational advantageous for “parallel” DNA's do not depend much on the hydrogen-bonded base pair type were indicated. One of them coincided with the conformational region typical for “antiparallel” DNA in particular for the B-form DNA Conformational energy of “parallel” DNA depends on the base pair type and for the most part is similar to the conformational energy of “antiparallel” B-DNA.  相似文献   

17.
The helical twist of poly d(A-s4T) was determined from the periodicity of the cleavage patterns of the double stranded polydeoxynucleotide adsorbed on calcium phosphate and found to be 14 bp per turn. Both cleavage patterns and 31P NMR spectra indicate a mononucleotide structure rather than an alternating B DNA like poly d(A-T). The failure of nucleosome formation excludes a B type structure. The discrepancy of the mononucleotide structure found in 31P NMR spectra and the dinucleotide structure given by X ray fiber diffraction is explained by an alternating tilt of the planes of the base pairs (base roll) as a consequence of a strong propeller twist. The importance of interstrand stacking interactions of adjacent 4-thiothymidines for the helical stability is discussed.  相似文献   

18.
Two hexanucleoside pentaphosphates, 5-methyl and 5-bromo cytosine derivatives of d(CpGpTp-ApCpG) have been synthesized, crystallized, and their three-dimensional structure solved. They both form left-handed Z-DNA and the methylated derivative has been refined to 1.2 Å resolution. These are the first crystal Z-DNA structures that contain AT base pairs. The overall form of the molecule is very similar to that of the unmethylated or the fully methylated (dC-dG)3 hexamer although there are slight changes in base stacking. However, significant differences are found in the hydration of the helical groove. When GC base pairs are present, the helical groove is systematically filled with two water molecules per base pair hydrogen bonded to the bases. Both of these water molecules are not seen in the electron density map in the segments of the helix containing AT base pairs, probably because of solvent disorder. This could be one of the features that makes AT base pairs form Z-DNA less readily than GC base pairs.  相似文献   

19.
20.
Y G Gao  Y C Liaw  H Robinson  A H Wang 《Biochemistry》1990,29(45):10307-10316
The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m5CGT(pS)Am5CG] have been determined at 1.7- and 1.8-A resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6(1)) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号