首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The increase in chromosome loss and/or recombination is likely to be due to the deficiency of functional gene product rather than to an aberrant function of the mutant gene product since the mutant alleles are, with one exception, recessive to the wild-type allele for this phenotype. The generality of this result suggests that a delay in almost any stage of chromosome replication or segregation leads to a decrease in the fidelity of mitotic chromosome transmission. In contrast, temperature-sensitive mutants defective in the control step of the cell cycle (cdc28), in cytokinesis (cdc3) or in protein synthesis (ils1) did not exhibit increased recombination or chromosome loss.--Based upon previous results with mutants and DNA-damaging agents in a variety of organisms, we suggest that the induction of mitotic recombination in certain mutants is due to the action of a repair pathway upon nicks or gaps left in the DNA. This interpretation is supported by the fact that the induced recombination is dependent upon the RAD52 gene product, as essential component in the recombinogenic DNA repair pathway. Gene products whose deficiency leads to induced recombination are, therefore, strong candidates for proteins that function in DNA metabolism. Among the mutants that induce recombination are those known to be defective in some aspect of DNA replication (cdc2, 6, 8, 9) as well as some mutants defective in the G2 (cdc13 and 17) and M (cdc5 and 14) phases of the mitotic cycle. We suggest that special aspects of DNA metabolism may be occurring in G2 and M in order to prepare the chromosomes for proper segregation.  相似文献   

2.
R. E. Palmer  E. Hogan    D. Koshland 《Genetics》1990,125(4):763-774
In the yeast, Saccharomyces cerevisiae, cell division cycle (CDC) genes have been identified whose products are required for the execution of different steps in the cell cycle. In this study, the fidelity of transmission of a 14-kb circular minichromosome and a 155-kb linear chromosome fragment was examined in cell divisions where specific CDC products were temporarily inactivated with either inhibitors, or temperature sensitive mutations in the appropriate CDC gene. All of the cdc mutants previously shown to induce loss of endogenous linear chromosomes also induced loss of a circular minichromosome and a large linear chromosome fragment in our study (either 1:0 or 2:0 loss events). Therefore, the efficient transmission of these artificial chromosomes depends upon the same trans factors that are required for the efficient transmission of endogenous chromosomes. In a subset of cdc mutants (cdc6, cdc7 and cdc16), the rate of minichromosome loss was significantly greater than the rate of loss of the linear chromosome fragment, suggesting that a structural feature of the minichromosome (nucleotide content, length or topology) makes the minichromosome hypersensitive to the level of function of these CDC gene products. In another subset of cdc mutants (cdc7 and cdc17), the relative rate of 1:0 events to 2:0 events differed for the minichromosome and chromosome fragment, suggesting that the type of chromosome loss event observed in these mutants was dependent upon chromosome structure. Finally, we show that 2:0 events for the minichromosome can occur by both a RAD52 dependent and RAD52 independent mechanism. These results are discussed in the context of the molecular functions of the CDC products.  相似文献   

3.
We have analyzed the CHL12 gene, earlier identified in a screen for yeast mutants with increased rates of mitotic loss of chromosome III and circular centromeric plasmids. A genomic clone of CHL12 was isolated and used to map its physical position on the right arm of chromosome XIII near the ADH3 locus. Nucleotide sequence analysis of CHL12 revealed a 2.2-kb open reading frame with a 84-kD predicted protein sequence. Analysis of the sequence upstream of the CHL12 open reading frame revealed the presence of two imperfect copies of MluI motif, ACGCGT, a sequence associated with many DNA metabolism genes in yeast. Analysis of the amino acid sequence revealed that the protein contains a NTP-binding domain and shares a low degree of homology with subunits of replication factor C (RF-C). A strain containing a null allele of CHL12 was viable under standard growth conditions, and as well as original mutants exhibited an increase in the level of spontaneous mitotic recombination, slow growth and cold-sensitive phenotypes. Most of cells carrying the null chl12 mutation arrested as large budded cells with the nucleus in the neck at nonpermissive temperature that typical for cell division cycle (cdc) mutants that arrest in the cell cycle at a point either immediately preceding M phase or during S phase. Cell cycle arrest of the chl12 mutant requires the RAD9 gene. We conclude that the CHL12 gene product has critical role in DNA metabolism.  相似文献   

4.
The hyper-gene conversion srs2-101 mutation of the SRS2 DNA helicase gene of Saccharomyces cerevisiae has been reported to suppress the UV sensitivity of rad18 mutants. New alleles of SRS2 were recovered using this suppressor phenotype. The alleles have been characterized with respect to suppression of rad18 UV sensitivity, hyperrecombination, reduction of meiotic viability, and definition of the mutational change within the SRS2 gene. Variability in the degree of rad18 suppression and hyperrecombination were found. The alleles that showed the severest effects were found to be missense mutations within the consensus domains of the DNA helicase family of proteins. The effect of mutations in domains I (ATP-binding) and V (proposed DNA binding) are reported. Some alleles of SRS2 reduce spore viability to 50% of wild-type levels. This phenotype is not bypassed by spo13 mutation. Although the srs2 homozygous diploids strains undergo normal commitment to meiotic recombination, this event is delayed by several hours in the mutant strains and the strains appear to stall in the progression from meiosis I to meiosis II.  相似文献   

5.
6.
L. W. Yuan  R. L. Keil 《Genetics》1990,124(2):263-273
Many genetic studies have shown that the frequency of homologous recombination depends largely on the distance in which recombination can occur. We have studied the effect of varying the length of duplicated sequences on the frequency of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. We find that the frequency of recombination resulting in the loss of one of the repeats and the intervening sequences reaches a plateau when the repeats are short. In addition, the frequency of recombination to correct a point mutation contained in one of these repeats is not proportional to the size of the duplication but rather depends dramatically on the location of the mutation within the repeated sequences. However, the frequency of mitotic interchromosomal reciprocal recombination is dependent on the distance separating the markers. The difference in the response of intrachromosomal and interchromosomal mitotic recombination to increasing lengths of homology may indicate there are different rate-limiting steps for recombination in these two cases. These findings have important implications for the maintenance and evolution of duplicated sequences.  相似文献   

7.
E. J. Louis  J. E. Haber 《Genetics》1990,124(3):547-559
Y's are a dispersed family of repeats that vary in copy number, location and restriction fragment lengths between strains but exhibit within-strain homogeneity. We have studied mitotic recombination between members of the subtelomeric Y' repeated sequence family of Saccharomyces cerevisiae. Individual copies of Y's were marked with SUP11 and URA3 which allowed for the selection of duplications and losses of the marked Y's. Duplications occurred by ectopic recombinational interactions between Y's at different chromosome ends as well as by unequal sister chromatid exchange. Several of the ectopic duplications resulted in an originally Y'-less chromosome end acquiring a marked Y'. Among losses, most resulted from ectopic exchange or conversion in which only the marker sequence was lost. In some losses, the chromosome end became Y'-less. Although the two subsets of Y's, Y'-longs (6.7 kb) and Y'-shorts (5.2 kb), share extensive sequence homology, a marked Y' recombines highly preferentially within its own subset. These mitotic interactions can in part explain the maintenance of Y's and their subsets, the homogeneity among Y's within a strain, as well as diversity between strains.  相似文献   

8.
Forty-eight mutants of Saccharomyces cerevisiae with defects in glycogen metabolism were isolated. The mutations defined eight GLC genes, the functions of which were determined. Mutations in three of these genes activate the RAS/cAMP pathway either by impairment of a RAS GTPase-activating protein (GLC1/IRA1 and GLC4/IRA2) or by activating Ras2p (GLC5/RAS2). SNF1 protein kinase (GLC2) was found to be required for normal glycogen levels. Glycogen branching enzyme (GLC3) was found to be required for significant glycogen synthesis. GLC6 was shown to be allelic to CIF1 (and probably FDP1, BYP1 and GGS1), mutations in which were previously found to prevent growth on glucose; this gene is also the same as TPS1, which encodes a subunit of the trehalose-phosphate synthase. Mutations in GLC6 were capable of increasing or decreasing glycogen levels, at least in part via effects on the regulation of glycogen synthase. GLC7 encodes a type 1 protein phosphatase that contributes to the dephosphorylation (and hence activation) of glycogen synthase. GLC8 encodes a homologue of type 1 protein phosphatase inhibitor-2. The genetic map positions of GLC1/IRA1, GLC3, GLC4/IRA2, GLC6/CIF1/TPS1 (and the adjacent VAT2/VMA2), and GLC7 were clarified. From the data on GLC3, there may be a suppression of recombination near the chromosome V centromere, at least in some strains.  相似文献   

9.
M. Lichten  J. E. Haber 《Genetics》1989,123(2):261-268
We have examined the role that genomic location plays in mitotic intragenic recombination. Mutant alleles of the LEU2 gene were inserted at five locations in the yeast genome. Diploid and haploid strains containing various combinations of these inserts were used to examine both allelic recombination (between sequences at the same position on parental homologs) and ectopic recombination (between sequences at nonallelic locations). Chromosomal location had little effect on mitotic allelic recombination. The rate of recombination to LEU2 at five different loci varied less than threefold. This finding contrasts with previous observations of strong position effects in meiosis; frequencies of meiotic recombination at the same five loci differ by about a factor of forty. Mitotic recombination between dispersed copies of leu2 displayed strong position effects. Copies of leu2 located approximately 20 kb apart on the same chromosome recombined at rates 6-13-fold higher than those observed for allelic copies of leu2. leu2 sequences located on nonhomologous chromosomes or at distant loci on the same chromosome recombined at rates similar to those observed for allelic copies. We suggest that, during mitosis, parental homologs interact with each other no more frequently than do nonhomologous chromosomes.  相似文献   

10.
J. Loidl 《Genetics》1995,139(4):1511-1520
Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability (~40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation.  相似文献   

11.
S. R. Judd  T. D. Petes 《Genetics》1988,118(3):401-410
Physical lengths of gene conversion tracts for meiotic and mitotic conversions were examined, using the same diploid yeast strain in all experiments. This strain is heterozygous for a mutation in the URA3 gene as well as closely linked restriction site markers. In cells that had a gene conversion event at the URA3 locus, it was determined by Southern analysis which of the flanking heterozygous restriction sites had co-converted. It was found that mitotic conversion tracts were longer on the average than meiotic tracts. About half of the tracts generated by spontaneous mitotic gene conversion included heterozygous markers 4.2 kb apart; none of the meiotic conversions included these markers. Stimulation of mitotic gene conversion by ultraviolet light or methylmethanesulfonate had no obvious effect on the size or distribution of the tracts. Almost all conversion tracts were continuous.  相似文献   

12.
CP1 (encoded by the CEP1 gene) is a centromere binding protein of Saccharomyces cerevisiae that binds to the conserved DNA element I (CDEI) of yeast centromeres. To investigate the function of CP1 in yeast meiosis, we analyzed the meiotic segregation of CEN plasmids, nonessential chromosome fragments (CFs) and chromosomes in cep1 null mutants. Plasmids and CFs missegregated in 10-20% of meioses with the most frequent type of aberrant event being precocious sister segregation at the first meiotic division; paired and unpaired CFs behaved similarly. An unpaired chromosome I homolog (2N + 1) also missegregated at high frequency in the cep1 mutant (7.6%); however, missegregation of other chromosomes was not detected by tetrad analysis. Spore viability of cep1 tetrads was significantly reduced, and the pattern of spore death was nonrandom. The inviability could not be explained solely by chromosome missegregation and is probably a pleiotropic effect of cep1. Mitotic chromosome loss in cep1 strains was also analyzed. Both simple loss (1:0 segregation) and nondisjunction (2:0 segregation) were increased, but the majority of loss events resulted from nondisjunction. We interpret the results to suggest that CP1 generally promotes chromatid-kinetochore adhesion.  相似文献   

13.
L. C. Kadyk  L. H. Hartwell 《Genetics》1993,133(3):469-487
Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination.  相似文献   

14.
15.
R. B. Walsh  D. Clifton  J. Horak    D. G. Fraenkel 《Genetics》1991,128(3):521-527
A congenic series of Saccharomyces cerevisiae strains has been constructed which carry, in all combinations, null mutations in the three genes for glucose phosphorylation: HXK1, HXK2 and GLK1, coding hexokinase 1 (also called PI or A), hexokinase 2 (PII or B), and glucokinase, respectively: i.e., eight strains, all of which grow on glucose except for the triple mutant. All or several of the strains were characterized in their steady state batch growth with 0.2% or 2% glucose, in aerobic as well as respiration-inhibited conditions, with respect to growth rate, yield, and ethanol formation. Glucose flux values were generally similar for different strains and conditions, provided they contained either hexokinase 1 or hexokinase 2. And their aerobic growth, as known for wild type, was largely fermentative with ca. 1.5 mol ethanol made per mol glucose used. The strain lacking both hexokinases and containing glucokinase was an exception in having reduced flux, a result fitting with its maximal rate of glucose phosphorylation in vitro. Aerobic growth of even the latter strain was largely fermentative (ca. 1 mol ethanol per mol glucose). Invertase expression was determined for a variety of media. All strains with HXK2 showed repression in growth on glucose and the others did not. Derepression in the wild-type strain occurred at ca. 1 mM glucose. The metabolic data do not support- or disprove-a model with HXK2 having only a secondary role in catabolite repression related to more rapid metabolism.  相似文献   

16.
17.
M. Vidal  A. M. Buckley  F. Hilger    R. F. Gaber 《Genetics》1990,125(2):313-320
Saccharomyces cerevisiae cells containing a deletion of TRK1, the gene encoding the high affinity potassium transporter, retain only low affinity uptake of this ion and consequently lose the ability to grow in media containing low levels (0.2 mM) of potassium. Using a trk1 delta strain, we selected spontaneous Trk+ pseudorevertants that regained the ability to grow on low concentrations of potassium. The revertants define three unlinked extragenic suppressors of trk1 delta. Dominant RPD2 mutations and recessive rpd1 and rpd3 mutations confer increased potassium uptake in trk1 delta cells. Genetic evidence suggests that RPD2 mutations are alleles of TRK2, the putative low affinity transporter gene, whereas rpd1 and rpd3 mutations increase TRK2 activity: (1) RPD2 mutations are closely linked to trk2, and (2) trk2 mutations are epistatic to both rpd1 and rpd3. rpd1 maps near pho80 on chromosome XV and rpd3 maps on the left arm of chromosome XIV, closely linked to kre1.  相似文献   

18.
A. Vincent  T. D. Petes 《Genetics》1989,122(4):759-772
We examined meiotic and mitotic gene conversion events involved in deletion of Ty elements and other insertions from the genome of the yeast Saccharomyces cerevisiae. We found that Ty elements and one other insertion were deleted by mitotic gene conversion less frequently than point mutations at the same loci. One non-Ty insertion similar in size to Ty, however, did not show this bias. Mitotic conversion events deleting insertions were more frequently associated with crossing over than those deleting point mutations. In meiosis, conversion events duplicating the element were more common than those that deleted the element for one of the loci (HIS4) examined.  相似文献   

19.
A. Sakai  Y. Shimizu    F. Hishinuma 《Genetics》1988,119(3):499-506
We have isolated mutants responsible for an oversecretion phenotype in Saccharomyces cerevisiae, using a promoter of SUC2 and the gene coding for alpha-amylase from mouse as a marker of secretion. These mutations defined two complementation groups, designated as ose1 (over secretion) and rgr1 (resistant to glucose repression). The ose1 mutant produced an oversecretion of amylase by 12- to 15-fold under derepressing conditions; however, the amylase mRNA was present at nearly the same amount as it was in the parent cells. No expression of the amylase gene was detected under repressing conditions. The rgr1 mutant oversecreted amylase by 11- to 13-fold under repressing conditions by 15- to 18-fold under derepressing conditions. The rgr1 mutant showed pleiotropic effects on the following cellular functions: (1) resistance to glucose repression, (2) temperature-sensitive lethality, (3) sporulation deficieny in homozygous diploid cells, and (4) abnormal cell morphology. The rgr1 mutation was not allelic with ssn6 and cyc9, and failed to suppress snf1.  相似文献   

20.
B. Ruskin  G. R. Fink 《Genetics》1993,134(1):43-56
Tandem inverted repeats (TIRs or hairpins) of 30 and 80 base-pair unit lengths are unstable mitotically in yeast (Saccharomyces cerevisiae). TIR instability results from deletions that remove part or all of the presumed hairpin structure from the chromosome. At least one deletion endpoint is always at or near the base of the hairpin, and almost all of the repaired junctions occur within short direct sequence repeats of 4 to 9 base pairs. The frequency of this event, which we call ``hairpin excision,' is influenced by chromosomal position, length of the inverted repeats, and the distance separating the repeat units; increasing the distance between the inverted repeats as little as 25 base pairs increases their chromosomal stability. The frequency of excision is not affected by representative rad mutations, but is influenced by mutations in certain genes affecting DNA synthesis. In particular, mutations in POL1/CDC17, the gene that encodes the large subunit of DNA polymerase I, increase the frequency of hairpin deletions significantly, implicating this protein in the normal maintainance of genomic TIRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号