首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goodwin SS  Vale RD 《Cell》2010,143(2):263-274
Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.  相似文献   

2.
To determine forces on intracellular microtubules, we measured shape changes of individual microtubules following laser severing in bovine capillary endothelial cells. Surprisingly, regions near newly created minus ends increased in curvature following severing, whereas regions near new microtubule plus ends depolymerized without any observable change in shape. With dynein inhibited, regions near severed minus ends straightened rapidly following severing. These observations suggest that dynein exerts a pulling force on the microtubule that buckles the newly created minus end. Moreover, the lack of any observable straightening suggests that dynein prevents lateral motion of microtubules. To explain these results, we developed a model for intracellular microtubule mechanics that predicts the enhanced buckling at the minus end of a severed microtubule. Our results show that microtubule shapes reflect a dynamic force balance in which dynein motor and friction forces dominate elastic forces arising from bending moments. A centrosomal array of microtubules subjected to dynein pulling forces and resisted by dynein friction is predicted to center on the experimentally observed time scale, with or without the pushing forces derived from microtubule buckling at the cell periphery.  相似文献   

3.
The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of this mechanism for pole focusing derives from studies performed in cell-free extracts devoid of centrosomes and kinetochores. Here, we examine how sustained force from kinetochores influences the mechanism of pole focusing in cultured cells. We show that the motor-driven self-organization activities associated with NuMA (i.e., cytoplasmic dynein) and HSET are not necessary for pole focusing if sustained force from kinetochores is inhibited in Nuf2- or Mis12-deficient cells. Instead, pole organization relies on TPX2 as it cross-links spindle microtubules to centrosome-associated mitotic asters. Thus, both motor-driven and static-cross-linking mechanisms contribute to spindle-pole organization, and kinetochore activity influences the mechanism of spindle-pole organization. The motor-driven self-organization of microtubule minus ends at spindle poles is needed to organize spindle poles in vertebrate somatic cells when kinetochores actively exert force on spindle microtubules.  相似文献   

4.
To get insight into the action of Rho GTPases on the microtubule system we investigated the effects of Cdc42, Rac1, and RhoA on the dynamics of microtubules in Swiss 3T3 fibroblasts. In control cells microtubule ends were dynamic: plus ends frequently switched between growth, shortening and pauses; the growth phase predominated over shortening. Free minus ends of microtubules depolymerized rapidly and never grew. Free microtubules were short-lived, and the microtubule network was organized into a radial array. In serum-starved cells microtubule ends became more stable: although plus ends still transited between growth and shortening, polymerization and depolymerization excursions became shorter and balanced each other. Microtubule minus ends were also stabilized. Consequently lifespan of free microtubules increased and microtubule array changed its radial pattern into a random one. Activation of Cdc42 and Rac1 in serum-starved cells promoted dynamic behavior of microtubule plus and minus ends, while inhibition of these GTPases in serum-grown cells suppressed microtubule dynamics and mimicked all effects of serum starvation. Activation of RhoA in serum-grown cells had effects similar to Cdc42 /Rac1 inactivation: it suppressed the dynamics of plus and minus ends, reduced the length of growth and shrinking episodes, and disrupted the radial organization of microtubules. However, in contrast to Cdc42 and Rac1 inactivation, active RhoA had no effect on the balance between microtubule growth and shortening. We conclude that Cdc42 and Rac1 have similar stimulating effects on microtubule dynamics while RhoA acts in an opposite way.  相似文献   

5.
Stathmin is a ubiquitous microtubule destabilizing protein that is believed to play an important role linking cell signaling to the regulation of microtubule dynamics. Here we show that stathmin strongly destabilizes microtubule minus ends in vitro at steady state, conditions in which the soluble tubulin and microtubule levels remain constant. Stathmin increased the minus end catastrophe frequency approximately 13-fold at a stathmin:tubulin molar ratio of 1:5. Stathmin steady-state catastrophe-promoting activity was considerably stronger at the minus ends than at the plus ends. Consistent with its ability to destabilize minus ends, stathmin strongly increased the treadmilling rate of bovine brain microtubules. By immunofluorescence microscopy, we also found that stathmin binds to purified microtubules along their lengths in vitro. Co-sedimentation of purified microtubules polymerized in the presence of a 1:5 initial molar ratio of stathmin to tubulin yielded a binding stoichiometry of 1 mol of stathmin per approximately 14.7 mol of tubulin in the microtubules. The results firmly establish that stathmin can increase the steady-state catastrophe frequency by a direct action on microtubules, and furthermore, they indicate that an important regulatory action of stathmin in cells may be to destabilize microtubule minus ends.  相似文献   

6.
The molecular basis of microtubule dynamic instability is controversial, but is thought to be related to a "GTP cap." A key prediction of the GTP cap model is that the proposed labile GDP-tubulin core will rapidly dissociate if the GTP-tubulin cap is lost. We have tested this prediction by using a UV microbeam to cut the ends from elongating microtubules. Phosphocellulose-purified tubulin was assembled onto the plus and minus ends of sea urchin flagellar axoneme fragments at 21-22 degrees C. The assembly dynamics of individual microtubules were recorded in real time using video microscopy. When the tip of an elongating plus end microtubule was cut off, the severed plus end microtubule always rapidly shortened back to the axoneme at the normal plus end rate. However, when the distal tip of an elongating minus end microtubule was cut off, no rapid shortening occurred. Instead, the severed minus end resumed elongation at the normal minus end rate. Our results show that some form of "stabilizing cap," possibly a GTP cap, governs the transition (catastrophe) from elongation to rapid shortening at the plus end. At the minus end, a simple GTP cap is not sufficient to explain the observed behavior unless UV induces immediate recapping of minus, but not plus, ends. Another possibility is that a second step, perhaps a structural transformation, is required in addition to GTP cap loss for rapid shortening to occur. This transformation would be favored at plus, but not minus ends, to account for the asymmetric behavior of the ends.  相似文献   

7.
Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the presence of protein phosphatase inhibitors, microtubules become sensitive to nocodazole. Depolymerization induced by nocodazole proceeds from microtubule plus ends, whereas microtubule minus ends remain inactive. Such nocodazole-sensitive microtubules do not exhibit subunit turnover. By contrast, when permeabilized cells are supplemented with Xenopus egg extracts, microtubules actively turn over. This involves continuous creation of free microtubule minus ends through microtubule fragmentation. Newly created minus ends apparently serve as sites of microtubule depolymerization, while net microtubule polymerization occurs at microtubule plus ends. We provide evidence that similar microtubule fragmentation and minus end–directed disassembly occur at the whole-cell level in intact cells. These data suggest that microtubule dynamics resembling dynamics observed in vivo can be reconstituted in permeabilized cells. This model system should provide means for in vitro assays to identify molecules important in regulating microtubule dynamics. Furthermore, our data support recent work suggesting that microtubule treadmilling is an important mechanism of microtubule turnover.  相似文献   

8.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.  相似文献   

9.
A group of microtubule-associated proteins called +TIPs (plus end tracking proteins), including EB1 family proteins, label growing microtubule ends specifically in diverse organisms and are implicated in spindle dynamics, chromosome segregation, and directing microtubules toward cortical sites. Here, we report three new EB1-like proteins from Arabidopsis and provide the intracellular localization for AtEB1, which differs from all known EB1 proteins in having a very long acidic C-terminal tail. In marked contrast to other EB1 proteins, the GFP-AtEB1 fusion protein localizes not only to microtubule plus ends but also to motile, pleiomorphic tubulovesicular membrane networks that surround other organelles and frequently merge with the endoplasmic reticulum. AtEB1 behavior thus resembles that of +TIPs, such as the cytoplasmic linker protein CLIP-170, that are known to associate with and pull along membrane tubules in animal systems but for which homologs have not been identified in plants. In addition, though EB1 proteins are believed to stabilize microtubules, a different behavior is observed for AtEB1 where instead of stabilizing a microtubule it localizes to already stabilized regions on a microtubule. The dual localization pattern of AtEB1 suggests links between microtubule plus end dynamics and endomembrane organization during polarized growth of plant cells.  相似文献   

10.
Cross-talk between microtubule networks and sites of cell–matrix and cell–cell adhesion has profound impact on these structures and is essential for proper cell organization, polarization and motility. Components of adhesion sites can interact directly with microtubules or with proteins that specifically associate with microtubule plus ends and minus ends and in this way capture, stabilize or destabilize microtubules. In their turn, microtubules can serve as routes for delivery of structural and regulatory factors that control adhesion site turnover. In addition, the microtubule lattice or growing microtubule plus ends can serve as diffusional sinks that accumulate and scaffold regulatory molecules, thereby affecting their activity in the vicinity of adhesions. Combination of these mechanisms underlies the functional co-operation between microtubules and adhesion sites and defines their dynamic behavior.  相似文献   

11.
gamma-tubulin is a minus end-specific microtubule binding protein   总被引:6,自引:3,他引:3       下载免费PDF全文
The role of microtubules in mediating chromosome segregation during mitosis is well-recognized. In addition, interphase cells depend upon a radial and uniform orientation of microtubules, which are intrinsically asymmetric polymers, for the directional transport of many cytoplasmic components and for the maintenance of the structural integrity of certain organelles. The slow growing minus ends of microtubules are linked to the centrosome ensuring extension of the fast growing plus ends toward the cell periphery. However, the molecular mechanism of this linkage is not clear. One hypothesis is that gamma-tubulin, located at the centrosome, binds to the minus ends of microtubules. To test this model, we synthesized radiolabeled gamma-tubulin in vitro. We demonstrate here biochemically a specific, saturable, and tight (Kd = 10(-10) M) interaction of gamma-tubulin and microtubule ends with a stoichiometry of 12.6 +/- 4.9 molecules of gamma-tubulin per microtubule. In addition, we designed an in vitro assay to visualize gamma-tubulin at the minus ends of axonemal microtubules. These data show that gamma-tubulin represents the first protein to bind microtubule minus ends and might be responsible for mediating the link between microtubules and the centrosome.  相似文献   

12.
Mutants of the yeast Kar3 protein are defective in nuclear fusion, or karyogamy, during mating and show slow mitotic growth, indicating a requirement for the protein both during mating and in mitosis. DNA sequence analysis predicts that Kar3 is a microtubule motor protein related to kinesin, but with the motor domain at the C-terminus of the protein rather than the N-terminus as in kinesin heavy chain. We have expressed Kar3 as a fusion protein with glutathione S-transferase (GST) and determined the in vitro motility properties of the bacterially expressed protein. The GST-Kar3 fusion protein bound to a coverslip translocates microtubules in gliding assays with a velocity of 1-2 microns/min and moves towards microtubule minus ends, unlike kinesin but like kinesin-related Drosophila ncd. Taxol-stabilized microtubules bound to GST-Kar3 on a coverslip shorten as they glide, resulting in faster lagging end, than leading end, velocities. Comparison of lagging and leading end velocities with velocities of asymmetrical axoneme-microtubule complexes indicates that microtubules shorten preferentially from the lagging or minus ends. The minus end-directed translocation and microtubule bundling of GST-Kar3 is consistent with models in which the Kar3 protein crosslinks internuclear microtubules and mediates nuclear fusion by moving towards microtubule minus ends, pulling the two nuclei together. In mitotic cells, the minus end motility of Kar3 could move chromosomes polewards, either by attaching to kinetochores and moving them polewards along microtubules, or by attaching to kinetochore microtubules and pulling them polewards along other polar microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.  相似文献   

14.
Surfing on microtubule ends   总被引:19,自引:0,他引:19  
A crowd of proteins seems to have gathered around the plus-ends of microtubules. A rapidly expanding group of proteins known as plus-end tracking proteins (+TIPs) have been identified that seem to be able to 'surf' the dynamic ends of microtubules. Microtubule plus-ends exist in multiple conformational and chemical states. In principle, altering this plus-end microenvironment is an appealing way for regulators such as the +TIPS to control microtubule dynamics; however, specific mechanisms are poorly defined. Here, we focus on new findings addressing the underlying mechanisms of plus-end tracking and the mechanisms by which +TIPS control microtubule dynamics. We review the evidence that plus-end-binding and the control of microtubule dynamics are mechanistically linked. We also consider the possibility that, by studying +TIPs, we might learn more about the dynamic structural changes at the microtubule ends that are at the heart of dynamic instability.  相似文献   

15.
SCG10 (superior cervical ganglia neural-specific 10 protein) is a neuron specific member of the stathmin family of microtubule regulatory proteins that like stathmin can bind to soluble tubulin and depolymerize microtubules. The direct actions of SCG10 on microtubules themselves and on their dynamics have not been investigated previously. Here, we analyzed the effects of SCG10 on the dynamic instability behavior of microtubules in vitro, both at steady state and early during microtubule polymerization. In contrast to stathmin, whose major action on dynamics is to destabilize microtubules by increasing the switching frequency from growth to shortening (the catastrophe frequency) at microtubule ends, SCG10 stabilized the plus ends both at steady state and early during polymerization by increasing the rate and extent of growth. For example, early during polymerization at high initial tubulin concentrations (20 microM), a low molar ratio of SCG10 to tubulin of 1:30 increased the growth rate by approximately 50%. In contrast to its effects at plus ends, SCG10 destabilized minus ends by increasing the shortening rate, the length shortened during shortening events, and the catastrophe frequency. Consistent with its ability to modulate microtubule dynamics at steady state, SCG10 bound to purified microtubules along their lengths. The dual activity of SCG10 at opposite microtubule ends may be important for its role in regulating growth cone microtubule dynamics. SCG10's ability to promote plus end growth may facilitate microtubule extension into filopodia, and its ability to destabilize minus ends could provide soluble tubulin for net plus end elongation.  相似文献   

16.
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the shmoo tip. We find that Kar3p, a minus end-directed kinesin motor protein, is required, whereas the other cytoplasmic motors, dynein and the kinesins Kip2p and Kip3p, are not. In the absence of Kar3p, attached microtubule plus ends released from the shmoo tip when they switched to depolymerization. Furthermore, microtubules in cells expressing kar3-1, a mutant that results in rigor binding to microtubules [2], were stabilized specifically at shmoo tips. Imaging of Kar3p-GFP during mating revealed that fluorescence at the shmoo tip increased during periods of microtubule depolymerization. These data are the first to localize the activity of a minus end-directed kinesin at the plus ends of microtubules. We propose a model in which Kar3p couples depolymerizing microtubule plus ends to the cell cortex and the Bim1p-Kar9p protein complex maintains attachment during microtubule polymerization. In support of this model, analysis of Bim1p-GFP at the shmoo tip results in a localization pattern complementary to that of Kar3p-GFP.  相似文献   

17.
The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937).

To determine if these previous results were dependent on the use of axonemes as seeds or were due to UV damage, or if they instead indicate an intermediate state in cap dynamics, we performed UV cutting of self-assembled microtubules and mechanical cutting of axoneme-nucleated microtubules. These independent methods yielded results consistent with the original work: a significant percentage of severed minus ends are stable after cutting. In additional experiments, we found that the stability of both severed plus and minus ends could be increased by increasing the free tubulin concentration, the solution GTP concentration, or by assembling microtubules with guanylyl-(α,β)-methylene-diphosphonate (GMPCPP).

Our results show that stability of severed ends, particularly minus ends, is not an artifact, but instead reveals the existence of a metastable kinetic intermediate state between the elongation and shortening states of dynamic instability. The kinetic properties of this intermediate state differ between plus and minus ends. We propose a three-state conformational cap model of dynamic instability, which has three structural states and four transition rate constants, and which uses the asymmetry of the tubulin heterodimer to explain many of the differences in dynamic instability at plus and minus ends.

  相似文献   

18.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

19.
The organization of microtubules is determined in most cells by a microtubule-organizing center, which nucleates microtubule assembly and anchors their minus ends. In Saccharomyces cerevisiae cells lacking She1, cytoplasmic microtubules detach from the spindle pole body at high rates. Increased rates of detachment depend on dynein activity, supporting previous evidence that She1 inhibits dynein. Detachment rates are higher in G1 than in metaphase cells, and we show that this is primarily due to differences in the strengths of microtubule attachment to the spindle pole body during these stages of the cell cycle. The minus ends of detached microtubules are stabilized by the presence of γ-tubulin and Spc72, a protein that tethers the γ-tubulin complex to the spindle pole body. A Spc72-Kar1 fusion protein suppresses detachment in G1 cells, indicating that the interaction between these two proteins is critical to microtubule anchoring. Overexpression of She1 inhibits the loading of dynactin components, but not dynein, onto microtubule plus ends. In addition, She1 binds directly to microtubules in vitro, so it may compete with dynactin for access to microtubules. Overall, these results indicate that inhibition of dynein activity by She1 is important to prevent excessive detachment of cytoplasmic microtubules, particularly in G1 cells.  相似文献   

20.
NuMA associates with microtubule motors during mitosis to perform an essential role in organizing microtubule minus ends at spindle poles. Using immunogold electron microscopy, we show that NuMA is a component of an electron-dense material concentrated at both mitotic spindle poles in PtK1 cells and the core of microtubule asters formed through a centrosome-independent mechanism in cell-free mitotic extracts. This NuMA-containing material is distinct from the peri-centriolar material and forms a matrix that appears to anchor microtubule ends at the spindle pole. In stark contrast to conventional microtubule-associated proteins whose solubility is directly dependent on microtubules, we find that once NuMA is incorporated into this matrix either in vivo or in vitro, it becomes insoluble and this insolubility is no longer dependent on microtubules. NuMA is essential for the formation of this insoluble matrix at the core of mitotic asters assembled in vitro because the matrix is absent from mitotic asters assembled in a cell-free mitotic extract that is specifically depleted of NuMA. These physical properties are consistent with NuMA being a component of the putative mitotic spindle matrix in vertebrate cells. Furthermore, given that NuMA is essential for spindle pole organization in vertebrate systems, it is likely that this insoluble matrix plays an essential structural function in anchoring and/or stabilizing microtubule minus ends at spindle poles in mitotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号