共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of C-terminal Src kinase blocks 14, 15-epoxyeicosatrienoic acid-induced tyrosine phosphorylation and mitogenesis 总被引:5,自引:0,他引:5
We have previously reported that 14,15-epoxyeicosatrienoic acid (14, 15-EET) is a potent mitogen for the renal epithelial cell line, LLCPKcl4. This mitogenic effect is dependent upon activation of a protein-tyrosine kinase cascade that results in activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Because of suggestive evidence that 14,15-EET also activated Src in these cells, we stably transfected LLCPKcl4 with an expression construct of the C-terminal Src kinase (CSK), which inhibits Src family kinase activity. In vitro Src kinase activity assays confirmed that in empty vector-transfected cells (Vector cells), 14, 15-EET increased Src kinase activity, while in clones overexpressing CSK mRNA and immunoreactive protein (CSK cells), 14,15-EET-induced activation of Src was almost completely blocked (94% inhibition). Of interest, epidermal growth factor (EGF) and fetal bovine serum (FBS) also increased Src activity in Vector cells, but not in CSK cells, further confirming the ability of CSK overexpression to prevent Src activation. CSK cells failed to increase [(3)H]thymidine incorporation in response to exogenous 14,15-EET. In contrast, both EGF and FBS significantly increased [(3)H]thymidine incorporation in CSK cells. Immunoprecipitation with anti-phosphotyrosine antibodies and immunoblotting with an antibody against extracellular signal-regulated kinase (ERK) indicated that in CSK cells, 14,15-EET failed to activate ERK1 and ERK2; however, EGF- and FBS-induced activation of ERKs was not different from that seen in Vector cells. In Vector cells, the 14,15-EET-stimulated tyrosine phosphorylation of ERKs was blocked by pretreatment with 1 microm PP2, a selective inhibitor of Src kinases. The present study demonstrates that 14, 15-EET exerts its mitogenic effects predominantly through a Src kinase-mediated pathway, which is the most upstream signaling step determined to date in the 14,15-EET-activated tyrosine kinase cascade in renal epithelial cells. 相似文献
2.
The catalytic activity of protein tyrosine kinases is commonly regulated by domain-domain interactions. The C-terminal Src kinase (Csk) contains a catalytic domain and the regulatory SH3 and SH2 domains. Both the presence of the regulatory domains and binding of specific phosphotyrosine-containing proteins to the SH2 domain activate Csk. The structural basis for both modes of activation is investigated here. First, the SH3-SH2 linker is crucial for Csk activation. Mutagenic and kinetic studies demonstrate that this activation is mediated by a cation-pi interaction between Arg68 and Trp188. Second, Ala scanning and kinetic analyses on residues in the SH2-catalytic domain interface identify three functionally distinct types of residues in mediating the communication between the SH2 and the catalytic domains. Type I residues are important in mediating a ligand-triggered activation of Csk because their mutation severely reduces Csk activation by the SH2 domain ligand. Type II residues are involved in suppressing Csk activity, and their mutation activates Csk, but makes Csk less sensitive to activation by the SH2 ligand. Both type I and type II residues are likely involved in mediating SH2 ligand-triggered activation of Csk. Type III residues are those located in the SH2 domain whose mutation severely decreases Csk catalytic activity without affecting the SH2 ligand-triggered activation. These residues likely mediate SH2 activation of Csk regardless of SH2-ligand interaction. These studies lead us to propose a domain-domain communication model that provides functional insights into the topology of Csk family of protein tyrosine kinases. 相似文献
3.
4.
Caveolin-1 is phosphorylated at tyrosine 14 in response to cellular stress. Tyrosine 14 is a consensus Abl phosphorylation site suggesting that caveolin-1 may be an Abl substrate. We report here that expression of c-Abl is required for oxidative stress-induced caveolin-1 phosphorylation. In contrast, c-Src expression is not required. Phosphocaveolin is one of only two phosphotyrosine signals missing in lysates from the Abl(-/-) cells, indicating that these cells still respond to oxidative stress. Oxidative stress-induced tyrosine phosphorylation of caveolin-1 occurs only at the Abl site, tyrosine 14. Caveolin-1 is also a major phosphotyrosine signal detected in cells over-expressing c-Abl. Our results show that Abl activation leads to phosphorylation of caveolin-1 on tyrosine 14. Both Abl and caveolin have been linked to the actin cytoskeleton, and oxidative stress-induced phosphocaveolin is enriched at focal contacts. This suggests that phosphocaveolin regulates these structures, perhaps through recruiting and activating SH2-domain proteins such as Csk. 相似文献
5.
Leonardo Vargas Beston F Nore Anna Berglof Juhana E Heinonen Pekka T Mattsson C I Edvard Smith Abdalla J Mohamed 《The Journal of biological chemistry》2002,277(11):9351-9357
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation. 相似文献
6.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells. 相似文献
7.
Meurer S Pioch S Gross S Müller-Esterl W 《The Journal of biological chemistry》2005,280(39):33149-33156
Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the beta1 but not of the alpha1 subunit of sGC. Tyrosine phosphorylation of sGCbeta1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of beta1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCbeta1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC. 相似文献
8.
Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A 总被引:2,自引:0,他引:2
Numerous components of thecAMP-based signaling cascade, namely G-proteins and G- protein coupledreceptors, adenylyl cyclase, and protein kinase A (PKA) have beenlocalized to caveolae and shown to be regulated by the caveolar markerproteins, the caveolins. In order to gain mechanistic insights intothese processes in vivo, we have assessed the functional interaction ofcaveolin-1 (Cav-1) with PKA using mutational analysis. As two regionsof Cav-1 had previously been implicated in PKA signaling in vitro, weconstructed Cav-1 molecules with mutations/deletions in one or both ofthese domains. Examination of these mutants shows that Cav-1 requiresthe presence of either the scaffolding domain or the COOH-terminaldomain (but not both) to functionally interact with and inhibit PKA.Interestingly, in contrast to the wild-type protein, these Cav-1mutants are not localized to caveolae microdomains. However, uponcoexpression with wild-type Cav-1, a substantial amount of the mutantswas recruited to the caveolae membrane fraction. Using the Cav-1 doublemutant with both disrupted scaffolding and COOH-terminal domains, weshow that wild-type Cav-1's inhibition of PKA signaling can bepartially abrogated in a dose-responsive manner; i.e., the mutant actsin a dominant-negative fashion. Thus, this dominant-negative caveolin-1mutant will be extremely valuable for assessing the functional role ofendogenous caveolin-1 in regulating a variety of other signaling cascades. 相似文献
9.
Kim YN Wiepz GJ Guadarrama AG Bertics PJ 《The Journal of biological chemistry》2000,275(11):7481-7491
Caveolin-1 is the major coat protein of caveolae and has been reported to interact with various intracellular signaling molecules including the epidermal growth factor (EGF) receptor. To investigate the involvement of caveolin-1 in EGF receptor action, we used mouse B82L fibroblasts transfected with (a) wild type EGF receptor, (b) a C-terminally truncated EGF receptor at residue 1022, (c) a C-terminally truncated EGF receptor at residue 973, or (d) a kinase-inactive EGF receptor (K721M). Following EGF treatment, there was a distinct electrophoretic mobility shift of the caveolin-1 present in cells expressing the truncated forms of the EGF receptor, but this shift was not detectable in cells bearing either normal levels of the wild type EGF receptor or a kinase-inactive receptor. This mobility shift was also not observed following the addition of other cell stimuli, such as platelet-derived growth factor, insulin, basic fibroblast growth factor, or phorbol 12-myristate 13-acetate. Analysis of caveolin-1 immunoprecipitates from EGF-stimulated or nonstimulated cells demonstrated that the EGF-induced mobility shift of caveolin-1 was associated with its tyrosine phosphorylation in cells expressing truncated EGF receptors. Maximal caveolin-1 phosphorylation was achieved within 5 min after exposure to 10 nM EGF and remained elevated for at least 2 h. Additionally, several distinct phosphotyrosine-containing proteins (60, 45, 29, 24, and 20 kDa) were co-immunoprecipitated with caveolin-1 in an EGF-dependent manner. Furthermore, the Src family kinase inhibitor, PP1, does not affect autophosphorylation of the receptor, but it does inhibit the EGF-induced mobility shift and phosphorylation of caveolin-1. Conversely, the MEK inhibitors PD98059 and UO126 could attenuate EGF-induced mitogen-activated protein kinase activation, they do not affect the EGF-induced mobility shift of caveolin-1. Because truncation and overexpression of the EGF receptor have been linked to cell transformation, these results provide the first evidence that the tyrosine phosphorylation of caveolin-1 occurs via an EGF-sensitive signaling pathway that can be potentiated by an aberrant activity or expression of various forms of the EGF receptor. 相似文献
10.
Lee S Ayrapetov MK Kemble DJ Parang K Sun G 《The Journal of biological chemistry》2006,281(12):8183-8189
Protein tyrosine kinases are key enzymes of mammalian signal transduction. Substrate specificity is a fundamental property that determines the specificity and fidelity of signaling by protein tyrosine kinases. However, how protein tyrosine kinases recognize the protein substrates is not well understood. C-terminal Src kinase (Csk) specifically phosphorylates Src family kinases on a C-terminal Tyr residue, which down-regulates their activities. We have previously determined that Csk recognizes Src using a substrate-docking site away from the active site. In the current study, we identified the docking determinants in Src recognized by the Csk substrate-docking site and demonstrated an interaction between the docking determinants of Src and the Csk substrate-docking site for this recognition. A similar mechanism was confirmed for Csk recognition of another Src family kinase, Yes. Although both Csk and MAP kinases used docking sites for substrate recognition, their docking sites consisted of different substructures in the catalytic domain. These results helped establish a docking-based substrate recognition mechanism for Csk. This model may provide a framework for understanding substrate recognition and specificity of other protein tyrosine kinases. 相似文献
11.
Y Liu Y C Liu N Meller L Giampa C Elly M Doyle A Altman 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(12):7095-7101
One of the major proteins that is rapidly tyrosine phosphorylated upon stimulation of the TCR/CD3 complex is the 120-kDa product of the c-cbl protooncogene (Cbl). Upon activation, tyrosine-phosphorylated Cbl interacts with the Src homology 2 (SH2) domains of several signaling proteins, e.g., phosphatidylinositol 3-kinase (PI3-K) and CrkL. In the present study, we report that pretreatment of Jurkat T cells with PMA reduced the anti-CD3-induced tyrosine phosphorylation of Cbl and, consequently, its activation-dependent association with PI3-K and CrkL. A specific protein kinase C (PKC) inhibitor (GF-109203X) reversed the effect of PMA on tyrosine phosphorylation of Cbl and restored the activation-dependent association of Cbl with PI3-K and CrkL. We also provide evidence that PKCalpha and PKCtheta can physically associate with Cbl and are able to phosphorylate it in vitro and in vivo. Furthermore, a serine-rich motif at the C terminus of Cbl, which is critical for PMA-induced 14-3-3 binding, is also phosphorylated by PKCalpha and PKCtheta in vitro. These results suggest that, by regulating tyrosine and serine phosphorylation of Cbl, PKC is able to control the association of Cbl with signaling intermediates, such as SH2 domain-containing proteins and 14-3-3 proteins, which may consequently result in the modulation of its function. 相似文献
12.
Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase. 总被引:5,自引:2,他引:5 下载免费PDF全文
S Mahajan J Fargnoli A L Burkhardt S A Kut S J Saouaf J B Bolen 《Molecular and cellular biology》1995,15(10):5304-5311
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. 相似文献
13.
14.
Caselli A Taddei ML Bini C Paoli P Camici G Manao G Cirri P Ramponi G 《Biochemistry》2007,46(21):6383-6392
Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are small enzymes that are ubiquitous in many organisms. They are important in biological processes such as cell proliferation, adhesion, migration, and invasiveness. LMW-PTP is expressed in mammalian cells as two isoforms (IF1 and IF2) originating through alternative splicing. We have previously shown that IF2 targets lipid rafts called caveolae and interacts with caveolin-1, their major structural protein. Caveolae are cholesterol- and sphingolipid-rich membrane microdomains that have been implicated in a variety of cellular functions, including signal transduction events. Caveolin-1 contains a scaffolding region that contributes to the binding of the protein to the plasma membrane and mediates protein omo- and etero-oligomerization. Interaction of many signaling molecules with the scaffolding domain sequesters them into caveolae and inhibits or suppresses their activities. Caveolin-interacting proteins usually have a typical sequence motif, also present in all the LMW-PTPs, which is characterized by aromatic or large hydrophobic residues in specific positions. We have examined here the interaction of the LMW-PTP isoforms with caveolin-1 and its molecular mechanism, together with the consequences for their tyrosine phosphatase activities. We found that IF1 and IF2 are both capable of interacting with defined regions of caveolin-1 and that their putative caveolin binding sequence motif is not responsible for the association. The formation of LMW-PTP/caveolin-1 complexes is accompanied by modulation of the enzyme activities, and the inhibitory effect elicited against IF1 is stronger than that against IF2. The caveolin scaffolding domain is directly involved in the observed phenomena. 相似文献
15.
The protein-tyrosine phosphatase SHP-1 plays a variety of roles in the "negative" regulation of cell signaling. The molecular basis for the regulation of SHP-1 is incompletely understood. Whereas SHP-1 has previously been shown to be phosphorylated on two tail tyrosine residues (Tyr(536) and Tyr(564)) by several protein-tyrosine kinases, the effects of these phosphorylation events have been difficult to address because of the intrinsic instability of the linkages within a protein-tyrosine phosphatase. Using expressed protein ligation, we have generated semisynthetic SHP-1 proteins containing phosphotyrosine mimetics at the Tyr(536) and Tyr(564) sites. Two phosphonate analogues were installed, phosphonomethylenephenylalanine (Pmp) and difluorophosphonomethylenephenylalanine (F(2)Pmp). Incorporation of Pmp at the 536 site led to 4-fold stimulation of the SHP-1 tyrosine phosphatase activity whereas incorporation at the 564 site led to no effect. Incorporation of F(2)Pmp at the 536 site led to 8-fold stimulation of the SHP-1 tyrosine phosphatase activity and 1.6-fold at the 564 site. A combination of size exclusion chromatography, phosphotyrosine peptide stimulation studies, and site-directed mutagenesis led to the structural model in which tyrosine phosphorylation at the 536 site engages the N-Src homology 2 domain in an intramolecular fashion relieving basal inhibition. In contrast, tyrosine phosphorylation at the 564 site has the potential to engage the C-Src homology 2 domain intramolecularly, which can modestly and indirectly influence catalytic activity. The finding that phosphonate modification at each of the 536 and 564 sites can promote interaction with the Grb2 adaptor protein indicates that the intramolecular interactions fostered by post-translational modifications of tyrosine are not energetically strong and susceptible to intermolecular competition. 相似文献
16.
17.
Chong YP Chan AS Chan KC Williamson NA Lerner EC Smithgall TE Bjorge JD Fujita DJ Purcell AW Scholz G Mulhern TD Cheng HC 《The Journal of biological chemistry》2006,281(44):32988-32999
The Src family of protein kinases (SFKs) mediates mitogenic signal transduction, and constitutive SFK activation is associated with tumorigenesis. To prevent constitutive SFK activation, the catalytic activity of SFKs in normal mammalian cells is suppressed mainly by two inhibitors called C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK), which inactivate SFKs by phosphorylating a consensus tyrosine near the C terminus of SFKs (Y(T)). The phosphorylated Y(T) intramolecularly binds to the SH2 domain of SFKs. This interaction, known as pY(T)/SH2 interaction, together with binding between the SH2 kinase linker and the SH3 domain of SFKs (linker/SH3 interaction) stabilizes SFKs in a "closed" inactive conformation. We previously discovered an alternative mechanism CHK employs to inhibit SFKs. This mechanism, referred to as the non-catalytic inhibitory mechanism, involves tight binding of CHK to SFKs; the binding alone is sufficient to inhibit SFKs. Herein, we constructed multiple active conformations of an SFK member, Hck, by systematically disrupting the two inhibitory interactions. We found that CHK employs the non-catalytic mechanism to inactivate these active conformations of Hck. However, CHK does not bind Hck when it adopts the inactive conformation in which both inhibitory interactions are intact. These data indicate that binding of CHK to SFKs via the non-catalytic mechanism is governed by the conformations of SFKs. Although CSK is also an inhibitor of SFKs, it does not inhibit SFKs by a similar non-catalytic mechanism. Thus, the non-catalytic inhibitory mechanism is a unique property of CHK that allows it to down-regulate multiple active conformations of SFKs. 相似文献
18.
Our aim was to study whether ultraviolet radiation produced any alterations in the subsequent signaling response of V79 fibroblasts to mitogenic stimulus. In ultraviolet C (UVC)-irradiated V79 fibroblasts, increase in cytosolic calcium in response to thrombin was nearly abolished in the presence of 3 mM external Ca(2+). UVC-treated V79 cells showed a greatly enhanced permeability to Ca(2+) which was reversed by pretreatment with genistein, a tyrosine kinase inhibitor. Genistein also alleviated the inhibition of thrombin response caused by UVC. In UVC-treated cells, significant activation of protein kinase C (PKC) occurred only on exposure to 3 mM external calcium and PKC inhibitors (H-7 or staurosporine) reversed UVC-induced adverse effects on the thrombin response. Therefore, it is likely that protein tyrosine phosphorylation by UVC may play a role in the subsequent inhibition of thrombin response in V79 cells through increased calcium influx and activation of PKC. 相似文献
19.
Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. 总被引:17,自引:9,他引:17 下载免费PDF全文
A Richardson R K Malik J D Hildebrand J T Parsons 《Molecular and cellular biology》1997,17(12):6906-6914
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly. 相似文献
20.
Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition. 相似文献