首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Recent data have shown that a functional NO-cGMP signalling system plays an important role during development and seems to be operative early during the differentiation of embryonic stem cells. The intriguing possibility exists that this role can be evolutionarily conserved between vertebrates and invertebrates. In this paper, we have analyzed the effect of NO-cGMP pathway on the regeneration process in Hydra vulgaris, the most primitive invertebrate possessing a nervous system. Our results indicate that NO production increased during Hydra regeneration. The NOS inhibitor L-NAME reduced the regenerative process and the same effect was obtained by treatment with either the specific guanylate cyclase inhibitor ODQ or the protein kinase G (PKG) inhibitor KT-5823. In contrast, the regeneration process was increased by treating decapitated Hydra with the NO donor NOC-18. Furthermore, we found that cell proliferation was also increased by treating decapitated Hydra with the NO donor NOC-18 and reduced by treatment with the NOS inhibitor L-NAME. Our results strongly suggest that the NO-cGMP-PKG pathway is involved in the control of the proliferative-differentiative patterns of developing and regenerating structures in cnidarians as well as bilaterians.  相似文献   

3.
STK, the Src tyrosine kinase homologous of the fresh water polyp hydra, is a key component of the signal transduction system for cell differentiation in this organism. Its activity is strongly increased 6 h after decapitation, and the inhibition of its activity with PP2/AG1879 prevents head development. We generated STK(-) polyps by using double-stranded RNA interference; STK activity of those polyps is blocked through time. STK RNAi silenced animals could not regenerate the head, but the foot, and could not reproduce asexually. The silencing of STK causes the development of ectopic heads in decapitated polyps in the first third of their body. Some head-specific genes, like Ks1, HyTcf, and Hybra1, seem to be regulated by the signaling pathway mediated by STK because their expression is modified in the STK(-) polyps. These findings support an important function for STK in the initial commitment of cells to develop head structures in hydra.  相似文献   

4.
Fungicidal activity of amiodarone is tightly coupled to calcium influx   总被引:1,自引:0,他引:1  
  相似文献   

5.
Nematocytes of hydra feature a complex cytoskeleton consisting mainly of several bundles of actin filaments and a basket-like structure formed by microtubules. The aim of this study was to establish the sequence of appearance of cytoskeletal elements during nematocyte development using immuno-fluorescence and electron microscopical techniques. Our results are a first step in trying to understand developmental hierarchies and mechanisms which govern the synthesis and assembly of the cytoskeleton in nematocytes. The finger-shaped rods around the apex of the capsule are the first detectable elements of the cytoskeleton. Microtubules of the basket structure then follow and later, the actin filaments of microvilli which support the cnidocil. The actin filaments, however, do not show the highly ordered bundling pattern characteristic of filaments in functional nematocytes.  相似文献   

6.
Hydra forced to regenerate a head releases head activator and head inhibitor during the first hours after cutting to induce head-specific growth and differentiation processes. Analysis of the size distribution demonstrated that the head-activator peptide is co-released with (a) large molecular weight carrier molecule(s) to which it is non-covalently bound. The carrier-bound head activator is fully active on Hydra indicating that a carrier does not hinder the interaction with receptors. In contrast to this the head inhibitor is released in its naked, low molecular mass form. The association or non-association with a carrier molecule results in marked differences in biological properties. The head activator has a short range of action, but a long half-life, the head inhibitor has a global range of action, but a short half-life. These results provide a plausible explanation why two antagonistically acting substances, although they are released from the same site and simultaneously nevertheless can give rise to a well-defined temporal and spatial pattern of differentiation as occurs, for example, during head regeneration in Hydra.  相似文献   

7.
Although interstitial cells of hydra can migrate either apically or basally along the body column, there is a distinct bias toward apical cell accumulation. This apical bias could be produced by a local vectorial property of the tissue or it may be controlled by a more global property, such as a signal from the apical head region. The migration behavior of BrdU-labeled interstitial cells was examined in several types of grafts to distinguish between these two general types of migration control. Grafting BrdU-labeled midgastric region tissue into a host in either the normal or the reverse orientation had no effect on the apical bias, indicating that a local vectorial cue was probably not guiding cells apically. In grafts with heads or with feet at both ends of the body column, there was no directional bias in migration if the labeled tissue was equidistant from both ends. In the two-headed grafts, if the labeled tissue was closer to one end, there was a bias in the direction of the closer head. The results suggest that a graded signal emanating from the head creates the apical bias and may attract cells via chemotaxis. The apical bias is enhanced in decapitated animals regenerating a head, indicating that the attracting signal is present and is possibly stronger in regenerating heads. The signal for cell migration may be involved in a patterning process underlying head regeneration.  相似文献   

8.
In the Gag-Pol polyprotein of HIV-1, the 99-amino acid protease is flanked at its N-terminus by a transframe region (TFR) composed of the transframe octapeptide (TFP) and 48 amino acids of the p6pol, separated by a protease cleavage site. The intact precursor (TFP-p6pol-PR) has very low dimer stability relative to that of the mature enzyme and exhibits negligible levels of stable tertiary structure. Thus, the TFR functions by destabilizing the native structure, unlike proregions found in zymogen forms of monomeric aspartic proteases. Cleavage at the p6pol-PR site to release a free N-terminus of protease is concomitant with the appearance of enzymatic activity and formation of a stable tertiary structure that is characteristic of the mature protease as demonstrated by nuclear magnetic resonance. The release of the mature protease from the precursor can either occur in two steps at pH values of 4 to 6 or in a single step above pH 6. The mature protease forms a dimer through a four-stranded beta-sheet at the interface. Residues 1-4 of the mature protease from each subunit constitute the outer strands of the beta-sheet, and are essential for maintaining the stability of the free protease but are not a prerequisite for the formation of tertiary structure and catalytic activity. Our experimental results provide the basis for the model proposed here for the regulation of the HIV-1 protease in the viral replication cycle.  相似文献   

9.
10.
C-jun NH(2)-terminal kinases (JNKs) represent a subgroup of mitogen-activated protein kinases (MAPKs). MAPK pathways are important regulators of cell proliferation, apoptosis, and gene expression throughout higher metazoans. We report here the characterization of a highly conserved Hydra JNK orthologue (HvJNK) that exhibits amino acid sequence identity of 61% as compared with human JNK1alpha. Phylogenetic analysis places HvJNK in a cluster with other metazoan JNKs. HvJNK is expressed in the nematocyte differentiation pathway. Double in situ hybridizations demonstrate overlapping expression with two other genes specifically activated during nematocyte differentiation, HyZic and Nowa, and restrict the phase of HvJNK expression to late proliferating nematoblasts and early differentiating nematocytes. Our results indicate that JNKs might have acted in cell differentiation in simple, pre-bilaterian animals.  相似文献   

11.
Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.  相似文献   

12.
《Current biology : CB》2019,29(11):1807-1817.e3
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
Escherichia coli UvrD is an SF1A (superfamily 1 type A) helicase/translocase that functions in several DNA repair pathways. A UvrD monomer is a rapid and processive single-stranded DNA (ssDNA) translocase but is unable to unwind DNA processively in vitro. Based on data at saturating ATP (500?μM), we proposed a nonuniform stepping mechanism in which a UvrD monomer translocates with biased (3' to 5') directionality while hydrolyzing 1 ATP per DNA base translocated, but with a kinetic step size of 4-5?nt/step, suggesting that a pause occurs every 4-5?nt translocated. To further test this mechanism, we examined UvrD translocation over a range of lower ATP concentrations (10-500?μM ATP), using transient kinetic approaches. We find a constant ATP coupling stoichiometry of ~1 ATP/DNA base translocated even at the lowest ATP concentration examined (10?μM), indicating that ATP hydrolysis is tightly coupled to forward translocation of a UvrD monomer along ssDNA with little slippage or futile ATP hydrolysis during translocation. The translocation kinetic step size remains constant at 4-5?nt/step down to 50?μM ATP but increases to ~7?nt/step at 10?μM ATP. These results suggest that UvrD pauses more frequently during translocation at low ATP but with little futile ATP hydrolysis.  相似文献   

15.
A mouse monoclonal antibody (JD1) to Hydra attenuata using the peroxidase-antiperoxidase (PAP) method revealed unipolar, bipolar, and multipolar sensory and ganglion cells in the head region of H. littoralis. Neurons isolated from macerated hypostomes and tentacles were classified according to the number of their cytoplasmic processes and the position of the cilium, when present, relative to the perikaryon. PAP-stained sensory cells had an apical ciliary cone, whereas ganglion cells did not. Neurons with cytoplasmic processes longer than 50 microns stained faintly, whereas those with processes shorter than 50 microns in length stained mainly dense brown. Unipolar neurons had an oval, crescent, round, or elliptic perikaryon with a single short axon. The perikaryal shape of bipolar neurons varied from round to tall triangular, short triangular, crescent, oval, or elliptic with two oppositely directed symmetric or asymmetric processes. Asymmetric processes were present in a bipolar sensory cell with a long apical cilium typical of gastrodermal sensory cells. One type of bipolar ganglion cell had a short perikaryal cilium. Another type had neurites longer than 50 microns. We found seven morphological variations of multipolar neurons, including one with an apical knob, two with a short perikaryal cilium, two with cytoplasmic loops near the perikaryon, one with perpendicular processes projecting from the major neurites, and one with a branched process longer than 50 microns opposite a tangled mass of neurites.  相似文献   

16.
Summary We have examined 30 families with multiple endocrine neoplasia type 2a (MEN2A). Linkage studies indicate that the gene for MEN2A is located on chromosome 10, tightly linked to the D10Z1 locus.  相似文献   

17.
Previous studies from this laboratory have shown that Sertoli cell-enriched culture medium contained two immunologically and structurally related proteins designated CMB-22 and CMB-23 with Mr of 37,000 and 40,000, respectively. We have now demonstrated that both CMB-22 and CMB-23 are monomeric proteins with the following NH2-terminal amino acid sequences: CMB-22, NH2-TPDPSLDVEWNEWRTKHGKTYNMNEERLKR; CMB-23, NH2-XAPXPDPSLDVEXNEXRTK. These sequences are virtually identical except that CMB-23 has three extra NH2 terminus amino acids of X-A-P. Comparison of these sequences with those in the Protein Identification Resource revealed that they are unique proteins. CMB-22 and CMB-23 are highly concentrated in testes and their levels in this tissue increase with age. Studies using [35S]methionine incorporation and immunoprecipitation demonstrated that Sertoli cells synthesize and secrete these proteins in vitro. Because they seem not to have been isolated previously, are concentrated in and synthesized by the testes, and are structurally related, we propose that CMB-22 and CMB-23 be designated testin I and testin II, respectively. The distribution of these proteins in biological fluids were compared with those of testibumin and rat androgen binding protein (rABP), two other Sertoli cell proteins. The results suggest that testins, unlike testibumin and rABP, are not transported to the epididymis. Although the amount of testins secreted by Sertoli cells in vitro is similar to that of testibumin and rABP, the concentrations in testis and rete testis fluid are several orders of magnitude less than that of testibumin and rABP. These observations suggest that the secretion of these proteins in vivo might be suppressed by germ cells. The fact that 10 times more testins are secreted by tubules from immature rats than by those from adult rats and that there is an increase in the testicular content of testins following a single dose of busulfan, which depleted the germ cells from the seminiferous epithelium, supports this hypothesis. Thus, the secretion of testins by Sertoli cells appears to be tightly coupled to the presence of germ cells; there is an inverse relationship between the amount of testins in the testis and the number of germ cells. These results suggest that testins are unique testicular proteins that can be used to study Sertoli cell-germ cell interactions in the seminiferous epithelium.  相似文献   

18.
In the lateral ocellus of the barnacle, we have tested the hypothesis that the transient increase of oxygen consumption (delta QO2) induced by light results from an increase in the rate of Na+ pumping. With a Na(+)-sensitive microelectrode, we measured the intracellular concentration of Na+ (Nai) in the photoreceptor cells. Nai was 17.6 +/- 1.2 mM (SE; n = 18) in darkness and it increased transiently by 10-20 mM after an 80-ms flash of intense light. The increase of Nai recovered in about the same time as the delta QO2, and the Na+/O2 ratio was 19.2 +/- 3.8 (SE; n = 6). Removing Na+ from the bath caused the delta QO2 to decrease by 79 +/- 3% (SE; n = 5). Exposure to 25 microM ouabain inhibited Na+ pumping and abolished the delta QO2. Removal of K+ from the bathing solution inhibited Na+ pumping in darkness, but mostly shortened the duration of the delta QO2; with a K(+)-sensitive microelectrode, we measured pericellular [K+] and found that it increased after the flash for about the same time as the delta QO2. Increasing Na+ pumping in darkness by reintroducing K+ in the bath or by injecting Na+ into one of the photoreceptor cells induced a delta QO2. Finally, intracellular injection of adenosine diphosphate and inorganic phosphate (ADP + Pi), the metabolic products of ATP splitting by the Na+ pump, also induced a delta QO2 in darkness. We conclude that all the results obtained are consistent with the formulated hypothesis.  相似文献   

19.
In Hydra, developmental processes are permanently active to maintain a simple body plan consisting of a two-layered, radially symmetrical tube with two differentiated structures, head and foot. Foot formation is a dynamic process and includes terminal differentiation of gastric epithelial cells into mucous secreting basal disc cells. A well-established marker for this highly specialized cell type is a locally expressed peroxidase (Hoffmeister et al. 1985). Based on the foot-specific peroxidase activity, the gene PPOD1 has been identified (Hoffmeister-Ullerich et al. 2002). Unexpectedly, this approach led to the identification of a second gene, PPOD2, with high sequence similarity to PPOD1 but a strikingly different expression pattern. Here, we characterize PPOD2 in more detail and show that both genes, PPOD1 and PPOD2, are members of a gene family with differential complexity and expression patterns in different Hydra species. At the genomic level, differences in gene number and structure within the PPOD gene family, even among closely related species, support a recently proposed phylogeny of the genus Hydra and point to unexpected genomic plasticity within closely related species of this ancient metazoan taxon. Electronic supplementary material Supplementary material is available in the online version of this article at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号