首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vav2, like all Dbl family proteins, possesses tandem Dbl homology (DH) and pleckstrin homology (PH) domains and functions as a guanine nucleotide exchange factor for Rho family GTPases. Whereas the PH domain is a critical positive regulator of DH domain function for a majority of Dbl family proteins, the PH domains of the related Vav and Vav3 proteins are dispensable for DH domain activity. Instead, Vav proteins contain a cysteine-rich domain (CRD) critical for DH domain function. We evaluated the contribution of the PH domain and the CRD to Vav2 guanine nucleotide exchange, signaling, and transforming activity. Unexpectedly, we found that mutations of the PH domain impaired Vav2 signaling, transforming activity, and membrane association. However, these mutations do not influence exchange activity on Rac and only slightly affect exchange on RhoA and Cdc42. We also found that the CRD was critical for the exchange activity in vitro and contributed to Vav2 membrane localization. Finally, we found that phosphoinositol 3-kinase activation synergistically enhanced Vav2 transforming and signaling activity by stimulating exchange activity but not membrane association. In conclusion, the PH domain and CRD are mechanistically distinct, positive modulators of Vav2 DH domain function in vivo.  相似文献   

2.
Vav family proteins are members of the Dbl family of guanine nucleotide exchange factors and activators of Rho family small GTPases. In addition to the Dbl homology (DH) domain important for guanine nucleotide exchange factor catalytic function, all Dbl family proteins contain an adjacent pleckstrin homology (PH) domain that serves to regulate DH domain activity. Although the role of the PH domain in Vav function has been evaluated extensively, its precise role and whether it serves a distinct role in different Vav proteins remain unresolved. Additionally, the precise role of an adjacent cysteine-rich domain (CRD) in regulating DH domain function is also unclear. In this study, we evaluated the contribution of these putative protein-protein or protein-lipid interaction domains to Vav signaling and transforming activity. In contrast to previous observations, we found that the PH domain is critical for Vav transforming activity. Similarly, the CRD was also essential and served a function distinct from that of the PH domain. Although mutation of either domain reduced Vav membrane association, addition of plasma membrane targeting sequences to either the CRD or PH domain mutant proteins did not restore Vav transforming activity. This result contrasts with other Dbl family proteins, where a membrane targeting sequence alone was sufficient to restore the loss of function caused by mutation of the PH domain. Furthermore, green fluorescent protein fusion proteins containing the PH domain or CRD, or both, failed to target to the plasma membrane, suggesting that these two domains also serve regulatory functions independent of promoting membrane localization. Finally, we found that phosphatidylinositol 3-kinase activation may promote Vav membrane association via phosphatidylinositol 3,4,5-triphosphate binding to the PH domain.  相似文献   

3.
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.  相似文献   

4.
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain an understanding of the involvement of these PH domains in guanine nucleotide exchange, we have determined the crystal structure of a DH/PH fragment from Dbs in complex with Cdc42. The complex features the PH domain in a unique conformation distinct from the PH domains in the related structures of Sos1 and Tiam1.Rac1. Consequently, the Dbs PH domain participates with the DH domain in binding Cdc42, primarily through a set of interactions involving switch 2 of the GTPase. Comparative sequence analysis suggests that a subset of Dbl-family proteins will utilize their PH domains similarly to Dbs.  相似文献   

5.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

6.
Yohe ME  Rossman K  Sondek J 《Biochemistry》2008,47(26):6827-6839
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho-family GTPases and typically possess tandem Dbl (DH) and pleckstrin homology (PH) domains that act in concert to catalyze exchange. Although the exchange potential of many Dbl-family proteins is constitutively activated by truncation, the precise mechanisms of regulation for many Dbl-family proteins are unknown. Tim and Vav are distantly related Dbl-family proteins that are similarly regulated; their Dbl homology (DH) domains interact with N-terminal helices to exclude and prevent activation of Rho GTPases. Phosphorylation, substitution, or deletion of the blocking helices relieves this autoinhibition. Here we show that two other Dbl-family proteins, Ngef and Wgef, which like Tim contain a C-terminal SH3 domain, are also activated by tyrosine phosphorylation of a blocking helix. Consequently, basal autoinhibition of DH domains by direct steric exclusion using short N-terminal helices likely represents a conserved mechanism of regulation for the large family of Dbl-related proteins. N-Terminal truncation or phosphorylation of many other Dbl-family GEFs leads to their activation; similar autoinhibition mechanisms could explain some of these events. In addition, we show that the C-terminal SH3 domain binding to a polyproline region N-terminal to the DH domain of the Tim subgroup of Dbl-family proteins provides a unique mechanism of regulated autoinhibition of exchange activity that is functionally linked to the interactions between the autoinhibitory helix and the DH domain.  相似文献   

7.
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.  相似文献   

8.
Normally, Rho GTPases are activated by the removal of bound GDP and the concomitant loading of GTP catalyzed by members of the Dbl family of guanine nucleotide exchange factors (GEFs). This family of GEFs invariantly contain a Dbl homology (DH) domain adjacent to a pleckstrin homology (PH) domain, and while the DH domain usually is sufficient to catalyze nucleotide exchange, possible roles for the conserved PH domain remain ambiguous. Here we demonstrate that the conserved PH domains of three distinct Dbl family proteins, intersectin, Dbs, and Tiam1, selectively bind lipid vesicles only when phosphoinositides are present. While the PH domains of intersectin and Dbs promiscuously bind several multiphosphorylated phosphoinositides, Tiam1 selectively interacts with phosphatidylinositol 3-phosphate (K(D) approximately 5-10 microm). In addition, and in contrast to recent reports, catalysis of nucleotide exchange on nonprenylated Rac1 provided by various extended portions of Tiam1 is not influenced by (a) soluble phosphoinositide head groups, (b) dibutyl versions of phosphoinositides, or (c) lipid vesicles containing phosphoinositides. Likewise, GEF activity afforded by DH/PH fragments of intersectin and Dbs are also not altered by phosphoinositide interactions. These results strongly suggest that unless all relevant components are localized to a lipid membrane surface, Dbl family GEFs generally are not intrinsically modulated by binding phosphoinositides.  相似文献   

9.
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.  相似文献   

10.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

11.
Vav and Sos1 are Dbl family guanine nucleotide exchange factors, which activate Rho family GTPases in response to phosphatidylinositol 3-kinase products. A pleckstrin homology domain adjacent to the catalytic Dbl homology domain via an unknown mechanism mediates the effects of phosphoinositides on guanine nucleotide exchange activity. Here we tested the possibility that phosphatidylinositol 3-kinase substrates and products control an interaction between the pleckstrin homology domain and the Dbl homology domain, thereby explaining the inhibitory effects of phosphatidylinositol 3-kinase substrates and stimulatory effects of the products. Binding studies using isolated fragments of Vav and Sos indicate phosphatidylinositol 3-kinase substrate promotes the binding of the pleckstrin homology domain to the Dbl homology domain and blocks Rac binding to the DH domain, whereas phosphatidylinositol 3-kinase products disrupt the Dbl homology/pleckstrin homology interactions and permit Rac binding. Additionally, Lck phosphorylation of Vav, a known activating event, reduces the affinities between the Vav Dbl homology and pleckstrin homology domains and permits Rac binding. We also show Vav activation in cells, as monitored by phosphorylation of Vav, Vav association with phosphatidylinositol 3,4,5-trisphosphate, and Vav guanine nucleotide exchange activity, is blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest the molecular mechanisms for activation of Vav and Sos1 require disruption of inhibitory intramolecular interactions involving the pleckstrin homology and Dbl homology domains.  相似文献   

12.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

13.
The Dbl homology (DH) domain was first identified in the Dbl oncogene product as the limit region required for mediating guanine nucleotide exchange on the Rho family GTPase Cdc42. Since the initial biochemical characterization of the DH domain, this conserved motif has been identified in a large family of proteins. In each case, a pleckstrin homology (PH) domain immediately follows the DH domain and this tandem DH-PH module is the signature motif of the Dbl family of guanine nucleotide exchange factors (GEFs). Recent structural studies have provided significant insight into the molecular basis of guanine nucleotide exchange by Dbl family GEFs, opening the door for understanding the specificity of the DH/GTPase interaction as well as providing a starting point for understanding how the exchange activity of these proteins is modulated to achieve specific biological outcomes in the cell.  相似文献   

14.
Ect2 was identified originally as a transforming protein and a member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs). Like all Dbl family proteins, Ect2 contains a tandem Dbl homology (DH) and pleckstrin homology (PH) domain structure. Previous studies demonstrated that N-terminal deletion of sequences upstream of the DH domain created a constitutively activated, transforming variant of Ect2 (designated DeltaN-Ect2 DH/PH/C), indicating that the N terminus served as a negative regulator of DH domain function in vivo. The role of sequences C-terminal to the DH domain has not been established. Therefore, we assessed the consequences of mutation of C-terminal sequences on Ect2-transforming activity. Surprisingly, in contrast to observations with other Dbl family proteins, we found that mutation of the invariant tryptophan residue in the PH domain did not impair DeltaN-Ect2 DH/PH/C transforming activity. Furthermore, although the sequences C-terminal to the PH domain lack any known functional domains or motifs, deletion of these sequences (DeltaN-Ect2 DH/PH) resulted in a dramatic reduction in transforming activity. Whereas DeltaN-Ect2 caused formation of lamellipodia, DeltaN-Ect2 DH/PH enhanced actin stress fiber formation, suggesting that C-terminal sequences influenced Ect2 Rho GTPase specificity. Consistent with this possibility, we determined that DeltaN-Ect2 DH/PH activated RhoA, but not Rac1 or Cdc42, whereas DeltaN-Ect2 DH/PH/C activated all three Rho GTPases in vivo. Taken together, these observations suggest that regions of Ect2 C-terminal to the DH domain alter the profile of Rho GTPases activated in vivo and consequently may contribute to the enhanced transforming activity of DeltaN-Ect2 DH/PH/C.  相似文献   

15.
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.  相似文献   

16.
Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.  相似文献   

17.
The Dbl family guanine nucleotide exchange factors (GEFs) contain a region of sequence similarity consisting of a catalytic Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. PH domains are involved in the regulated targeting of signaling molecules to plasma membranes by protein-protein and/or protein-lipid interactions. Here we show that Dbl PH domain binding to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate results in the inhibition of Dbl GEF activity on Rho family GTPase Cdc42. Phosphatidylinositol 4,5-bisphosphate binding to the PH domain significantly inhibits the Cdc42 interactive activity of the DH domain suggesting that the DH domain is subjected to the PH domain modulation under the influence of phosphoinositides (PIPs). We generated Dbl mutants unable to interact with PIPs. These mutants retained GEF activity on Cdc42 in the presence of PIPs and showed a markedly enhanced activating potential for both Cdc42 and RhoA in vivo while displaying decreased cellular transforming activity. Immunofluorescence analysis of NIH3T3 transfectants revealed that whereas the PH domain localizes to actin stress fibers and plasma membrane, the PH mutants are no longer detectable on the plasma membrane. These results suggest that modulation of PIPs in both the GEF catalytic activity and the targeting to plasma membrane determines the outcome of the biologic activity of Dbl.  相似文献   

18.
Calcium sensitization in smooth muscle is mediated by the RhoA GTPase, activated by hitherto unspecified nucleotide exchange factors (GEFs) acting downstream of Galphaq/Galpha(12/13) trimeric G proteins. Here, we show that at least one potential GEF, the PDZRhoGEF, is present in smooth muscle, and its isolated DH/PH fragment induces calcium sensitization in the absence of agonist-mediated signaling. In vitro, the fragment shows high selectivity for the RhoA GTPase. Full-length fragment is required for the nucleotide exchange, as the isolated DH domain enhances it only marginally. We crystallized the DH/PH fragment of PDZRhoGEF in complex with nonprenylated human RhoA and determined the structure at 2.5 A resolution. The refined molecular model reveals that the mutual disposition of the DH and PH domains is significantly different from other previously described complexes involving DH/PH tandems, and that the PH domain interacts with RhoA in a unique mode. The DH domain makes several specific interactions with RhoA residues not conserved among other Rho family members, suggesting the molecular basis for the observed specificity.  相似文献   

19.
20.
Guanine nucleotide exchange factors for Rho-GTPases (Rho-GEFs) invariably share a catalytic Dbl-Homology (DH) domain associated with a Pleckstrin Homology (PH) domain, whose function in Rho-GEF activation is not well understood. Trio is the first member of an emerging family of Dbl proteins containing two Rho-GEF domains (GEFD1 and GEFD2). TrioGEFD1 activates the GTPases RhoG and Rac1, while TrioGEFD2 acts on RhoA. In this study, we have investigated the roles of the two PH domains of Trio in Rho-GEF activity. We show that TrioPH1 is required for GEFD1-mediated induction of actin cytoskeleton remodeling and JNK activation. TrioPH1 is involved both in the catalytic activity and in the subcellular localization of its associated DH domain, by acting as a cytoskeletal targeting signal. Moreover, TrioPH1 in association with DH2 activates the JNK pathway, by an unknown mechanism independent of DH2 catalytic activity. TrioPH2 does not behave as a targeting module in intact cells. TrioPH2 inhibits DH2-dependent stress fiber formation, which correlates with the TrioPH2-mediated inhibition of DH2 GEF activity. In addition, expression in the neuron-like PC12 cell line of the intact Trio protein deleted of each PH domain shows that only TrioPH1 is required for Trio-induced neurite outgrowth. Taken together, these data demonstrate that the two PH domains play a different role in the control of Trio Rho-GEF function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号