首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping PDB chains to UniProtKB entries   总被引:2,自引:0,他引:2  
MOTIVATION: UniProtKB/SwissProt is the main resource for detailed annotations of protein sequences. This database provides a jumping-off point to many other resources through the links it provides. Among others, these include other primary databases, secondary databases, the Gene Ontology and OMIM. While a large number of links are provided to Protein Data Bank (PDB) files, obtaining a regularly updated mapping between UniProtKB entries and PDB entries at the chain or residue level is not straightforward. In particular, there is no regularly updated resource which allows a UniProtKB/SwissProt entry to be identified for a given residue of a PDB file. RESULTS: We have created a completely automatically maintained database which maps PDB residues to residues in UniProtKB/SwissProt and UniProtKB/trEMBL entries. The protocol uses links from PDB to UniProtKB, from UniProtKB to PDB and a brute-force sequence scan to resolve PDB chains for which no annotated link is available. Finally the sequences from PDB and UniProtKB are aligned to obtain a residue-level mapping. AVAILABILITY: The resource may be queried interactively or downloaded from http://www.bioinf.org.uk/pdbsws/.  相似文献   

2.
The HSSP database of protein structure-sequence alignments.   总被引:3,自引:0,他引:3       下载免费PDF全文
HSSP (homology-derived structures of proteins) is a derived database merging structural (2-D and 3-D) and sequence information (1-D). For each protein of known 3D structure from the Protein Data Bank, the database has a file with all sequence homologues, properly aligned to the PDB protein. Homologues are very likely to have the same 3D structure as the PDB protein to which they have been aligned. As a result, the database is not only a database of sequence aligned sequence families, but it is also a database of implied secondary and tertiary structures.  相似文献   

3.
Homology-derived secondary structure of proteins (HSSP) is a well-known database of multiple sequence alignments (MSAs) which merges information of protein sequences and their three-dimensional structures. It is available for all proteins whose structure is deposited in the PDB. It is also used by STING and (Java)Protein Dossier to calculate and present relative entropy as a measure of the degree of conservation for each residue of proteins whose structure has been solved and deposited in the PDB. However, if the STING and (Java)Protein Dossier are to provide support for analysis of protein structures modeled in computers or being experimentally solved but not yet deposited in the PDB, then we need a new method for building alignments having a flavor of HSSP alignments (myMSAr). The present study describes a new method and its corresponding databank (SH2QS--database of sequences homologue to the query [structure-having] sequence). Our main interest in making myMSAr was to measure the degree of residue conservation for a given query sequence, regardless of whether it has a corresponding structure deposited in the PDB. In this study, we compare the measurement of residue conservation provided by corresponding alignments produced by HSSP and SH2QS. As a case study, we also present two biologically relevant examples, the first one highlighting the equivalence of analysis of the degree of residue conservation by using HSSP or SH2QS alignments, and the second one presenting the degree of residue conservation for a structure modeled in a computer, which , as a consequence, does not have an alignment reported by HSSP.  相似文献   

4.
PISCES: a protein sequence culling server   总被引:21,自引:0,他引:21  
PISCES is a public server for culling sets of protein sequences from the Protein Data Bank (PDB) by sequence identity and structural quality criteria. PISCES can provide lists culled from the entire PDB or from lists of PDB entries or chains provided by the user. The sequence identities are obtained from PSI-BLAST alignments with position-specific substitution matrices derived from the non-redundant protein sequence database. PISCES therefore provides better lists than servers that use BLAST, which is unable to identify many relationships below 40% sequence identity and often overestimates sequence identity by aligning only well-conserved fragments. PDB sequences are updated weekly. PISCES can also cull non-PDB sequences provided by the user as a list of GenBank identifiers, a FASTA format file, or BLAST/PSI-BLAST output.  相似文献   

5.
The web application oriented on identification and visualization of protein regions encoded by exons is presented. The Exon Visualiser can be used for visualisation on different levels of protein structure: at the primary (sequence) level and secondary structures level, as well as at the level of tertiary protein structure. The programme is suitable for processing data for all genes which have protein expressions deposited in the PDB database. The procedure steps implemented in the application: I) loading exons sequences and theirs coordinates from GenBank file as well as protein sequences: CDS from GenBank and aminoacid sequence from PDB II) consensus sequence creation (comparing amino acid sequences form PDB file with the CDS sequence from GenBank file) III) matching exon coordinates IV) visualisation in 2D and 3D protein structures. Presented web-tool among others provides the color-coded graphical display of protein sequences and chains in three dimensional protein structures which are correlated with the corresponding exons.

Availability

http://149.156.12.53/ExonVisualiser/  相似文献   

6.
In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.  相似文献   

7.
Chu CK  Feng LL  Wouters MA 《Proteins》2005,60(4):577-583
Structural data mining studies attempt to deduce general principles of protein structure from solved structures deposited in the protein data bank (PDB). The entire database is unsuitable for such studies because it is not representative of the ensemble of protein folds. Given that novel folds continue to be unearthed, some folds are currently unrepresented in the PDB while other folds are overrepresented. Overrepresentation can easily be avoided by filtering the dataset. PDB_SELECT is a well-used representative subset of the PDB that has been deduced by sequence comparison. Specifically, structures with sequences that exhibit a pairwise sequence identity above a threshold value are weeded from the dataset. Although length criteria for pairwise alignments have a structural basis, this automated method of pruning is essentially sequence-based and runs into problems in the twilight zone, possibly resulting in some folds being overrepresented. The value-added structure databases SCOP and CATH are also a potential source of a nonredundant dataset. Here we compare the sequence-derived dataset PDB_SELECT with the structural databases SCOP (Structural Classification Of Proteins) and CATH (Class-Architecture-Topology-Homology). We show that some folds remain overrepresented in the PDB_SELECT dataset while other folds are not represented at all. However, SCOP and CATH also have their own problems such as the labor-intensiveness of the update process and the problem of determining whether all folds are equally or sufficiently distant. We discuss areas where further work is required.  相似文献   

8.
The concept of a flexible protein sequence pattern is defined. In contrast to conventional pattern matching, template or sequence alignment methods, flexible patterns allow residue patterns typical of a complete protein fold to be developed in terms of residue positions (elements), separated by gaps of defined range. An efficient dynamic programming algorithm is presented to enable the best alignment(s) of a pattern with a sequence to be identified. The flexible pattern method is evaluated in detail by reference to the globin protein family, and by comparison to alignment techniques that exploit single sequence, multiple sequence and secondary structural information. A flexible pattern derived from seven globins aligned on structural criteria successfully discriminates all 345 globins from non-globins in the Protein Identification Resource database. Furthermore, a pattern that uses helical regions from just human alpha-haemoglobin identified 337 globins compared to 318 for the best non-pattern global alignment method. Patterns derived from successively fewer, yet more highly conserved positions in a structural alignment of seven globins show that as few as 38 residue positions (25 buried hydrophobic, 4 exposed and 9 others) may be used to uniquely identify the globin fold. The study suggests that flexible patterns gain discriminating power both by discarding regions known to vary within the protein family, and by defining gaps within specific ranges. Flexible patterns therefore provide a convenient and powerful bridge between regular expression pattern matching techniques and more conventional local and global sequence comparison algorithms.  相似文献   

9.
A significant number of protein sequences in a given proteome have no obvious evolutionarily related protein in the database of solved protein structures, the PDB. Under these conditions, ab initio or template-free modeling methods are the sole means of predicting protein structure. To assess its expected performance on proteomes, the TASSER structure prediction algorithm is benchmarked in the ab initio limit on a representative set of 1129 nonhomologous sequences ranging from 40 to 200 residues that cover the PDB at 30% sequence identity and which adopt alpha, alpha + beta, and beta secondary structures. For sequences in the 40-100 (100-200) residue range, as assessed by their root mean square deviation from native, RMSD, the best of the top five ranked models of TASSER has a global fold that is significantly close to the native structure for 25% (16%) of the sequences, and with a correct identification of the structure of the protein core for 59% (36%). In the absence of a native structure, the structural similarity among the top five ranked models is a moderately reliable predictor of folding accuracy. If we classify the sequences according to their secondary structure content, then 64% (36%) of alpha, 43% (24%) of alpha + beta, and 20% (12%) of beta sequences in the 40-100 (100-200) residue range have a significant TM-score (TM-score > or = 0.4). TASSER performs best on helical proteins because there are less secondary structural elements to arrange in a helical protein than in a beta protein of equal length, since the average length of a helix is longer than that of a strand. In addition, helical proteins have shorter loops and dangling tails. If we exclude these flexible fragments, then TASSER has similar accuracy for sequences containing the same number of secondary structural elements, irrespective of whether they are helices and/or strands. Thus, it is the effective configurational entropy of the protein that dictates the average likelihood of correctly arranging the secondary structure elements.  相似文献   

10.
PSST-2.0     
PSST-2.0 (Protein Data Bank [PDB] Sequence Search Tool) is an updated version of the earlier PSST (Protein Sequence Search Tool), and the philosophy behind the search engine has remained unchanged. PSST-2.0 is a Web-based, interactive search engine developed to retrieve required protein or nucleic acid sequence information and some of its related details, primarily from sequences derived from the structures deposited in the PDB (the database of 3-dimensional [3-D] protein and nucleic acid structures). Additionally, the search engine works for a selected subset of 25% or 90% non-homologous protein chains. For some of the selected options, the search engine produces a detailed output for the user-uploaded, 3-D atomic coordinates of the protein structure (PDB file format) from the client machine through the Web browser. The search engine works on a locally maintained PDB, which is updated every week from the parent server at the Research Collaboratory for Structural Bioinformatics, and hence the search results are up to date at any given time. AVAILABILITY: PSST-2.0 is freely accessible via http://pranag.physics.iisc.ernet.in/psst/ or http://144.16.71.10/psst/.  相似文献   

11.
To optimize the search for structural templates in protein comparative modelling, the query sequence is split into domains. The initial list of templates for each domain, extracted from PFAM plus PDB and SCOP, is then ranked according to sequence identity (%ID), coverage and resolution. If %ID is less than 30, secondary structure matching is used to filter out false templates. AVAILABILITY: http://www.bmm.icnet.uk/~3djigsaw/dom_fish  相似文献   

12.
Many protein pairs that share the same fold do not have any detectable sequence similarity, providing a valuable source of information for studying sequence-structure relationship. In this study, we use a stringent data set of structurally similar, sequence-dissimilar protein pairs to characterize residues that may play a role in the determination of protein structure and/or function. For each protein in the database, we identify amino-acid positions that show residue conservation within both close and distant family members. These positions are termed "persistently conserved". We then proceed to determine the "mutually" persistently conserved (MPC) positions: those structurally aligned positions in a protein pair that are persistently conserved in both pair mates. Because of their intra- and interfamily conservation, these positions are good candidates for determining protein fold and function. We find that 45% of the persistently conserved positions are mutually conserved. A significant fraction of them are located in critical positions for secondary structure determination, they are mostly buried, and many of them form spatial clusters within their protein structures. A substitution matrix based on the subset of MPC positions shows two distinct characteristics: (i) it is different from other available matrices, even those that are derived from structural alignments; (ii) its relative entropy is high, emphasizing the special residue restrictions imposed on these positions. Such a substitution matrix should be valuable for protein design experiments.  相似文献   

13.
Coevolving residues in a multiple sequence alignment provide evolutionary clues of biophysical interactions in 3D structure. Despite a rich literature describing amino acid coevolution within or between proteins and nucleic acid coevolution within RNA, to date there has been no direct evidence of coevolution between protein and RNA. The ribosome, a structurally conserved macromolecular machine composed of over 50 interacting protein and RNA chains, provides a natural example of RNA/protein interactions that likely coevolved. We provide the first direct evidence of RNA/protein coevolution by characterizing the mutual information in residue triplets from a multiple sequence alignment of ribosomal protein L22 and neighboring 23S RNA. We define residue triplets as three positions in the multiple sequence alignment, where one position is from the 23S RNA and two positions are from the L22 protein. We show that residue triplets with high mutual information are more likely than residue doublets to be proximal in 3D space. Some high mutual information residue triplets cluster in a connected series across the L22 protein structure, similar to patterns seen in protein coevolution. We also describe RNA nucleotides for which switching from one nucleotide to another (or between purines and pyrimidines) results in a change in amino acid distribution for proximal amino acid positions. Multiple crystal structures for evolutionarily distinct ribosome species can provide structural evidence for these differences. For one residue triplet, a pyrimidine in one species is a purine in another, and RNA/protein hydrogen bonds are present in one species but not the other. The results provide the first direct evidence of RNA/protein coevolution by using higher order mutual information, suggesting that biophysical constraints on interacting RNA and protein chains are indeed a driving force in their evolution.  相似文献   

14.
MOTIVATION: Identification of residues that account for protein function specificity is crucial, not only for understanding the nature of functional specificity, but also for protein engineering experiments aimed at switching the specificity of an enzyme, regulator or transporter. Available algorithms generally use multiple sequence alignments to identify residue positions conserved within subfamilies but divergent in between. However, many biological examples show a much subtler picture than simple intra-group conservation versus inter-group divergence. RESULTS: We present multi-RELIEF, a novel approach for identifying specificity residues that is based on RELIEF, a state-of-the-art Machine-Learning technique for feature weighting. It estimates the expected 'local' functional specificity of residues from an alignment divided in multiple classes. Optionally, 3D structure information is exploited by increasing the weight of residues that have high-weight neighbors. Using ROC curves over a large body of experimental reference data, we show that (a) multi-RELIEF identifies specificity residues for the seven test sets used, (b) incorporating structural information improves prediction for specificity of interaction with small molecules and (c) comparison of multi-RELIEF with four other state-of-the-art algorithms indicates its robustness and best overall performance. AVAILABILITY: A web-server implementation of multi-RELIEF is available at www.ibi.vu.nl/programs/multirelief. Matlab source code of the algorithm and data sets are available on request for academic use.  相似文献   

15.
N-linked glycans not only orchestrate the folding and intracellular transport of viral glycoproteins but also modulate their function. We have characterized the three glycans attached to fusion (F) proteins of the morbilliviruses canine distemper virus and measles virus. The individual Morbillivirus glycans have similar functional properties: the glycan at position 68 is essential for protein transport, and those at positions 36 and 75 modulate fusion (numbering according to the Newcastle disease virus [NDV] F protein sequence). Based on the crystal structure of the NDV F protein, we then predicted the locations of the Morbillivirus glycans: the glycan at position 36 is located in the F protein head, and those at positions 68 and 75 are located near the neck-stalk interface. NDV position 36 is not occupied by a glycan; the only glycan in that F protein head also has a fusion control function and grows from residue 366, located only 6 A from residue 36. We then exchanged the glycan at position 36 with the glycan at position 366 and showed functional complementation. Thus, structural information about the F proteins of Paramyxoviridae coupled with functional analysis disclosed a location in the protein head into which fusion-modulating glycans independently evolved.  相似文献   

16.
A common residue numbering scheme for all immunoglobulin variable domains (immunoglobulin light chain lambda (V(lambda)) and kappa (V(kappa)) variable domains, heavy chain variable domains (V(H)) and T-cell receptor alpha (V(alpha)), beta (V(beta)), gamma (V(gamma)) and delta (V(delta)) variable domains) has been devised. Based on the spatial alignment of known three-dimensional structures of immunoglobulin domains, it places the alignment gaps in a way that minimizes the average deviation from the averaged structure of the aligned domains. This residue numbering scheme was applied to the immunoglobulin variable domain structures in the PDB database to automate the extraction of information on structural variations in homologous positions of the different molecules. A number of methods are presented that allow the automated projection of information derived from individual structures or from the comparison of multi-structure alignments onto a graphical representation of the sequence alignment.  相似文献   

17.
Infections caused by human parasites (HPs) affect the poorest 500 million people worldwide but chemotherapy has become expensive, toxic, and/or less effective due to drug resistance. On the other hand, many 3D structures in Protein Data Bank (PDB) remain without function annotation. We need theoretical models to quickly predict biologically relevant Parasite Self Proteins (PSP), which are expressed differentially in a given parasite and are dissimilar to proteins expressed in other parasites and have a high probability to become new vaccines (unique sequence) or drug targets (unique 3D structure). We present herein a model for PSPs in eight different HPs (Ascaris, Entamoeba, Fasciola, Giardia, Leishmania, Plasmodium, Trypanosoma, and Toxoplasma) with 90% accuracy for 15?341 training and validation cases. The model combines protein residue networks, Markov Chain Models (MCM) and Artificial Neural Networks (ANN). The input parameters are the spectral moments of the Markov transition matrix for electrostatic interactions associated with the protein residue complex network calculated with the MARCH-INSIDE software. We implemented this model in a new web-server called MISS-Prot (MARCH-INSIDE Scores for Self-Proteins). MISS-Prot was programmed using PHP/HTML/Python and MARCH-INSIDE routines and is freely available at: . This server is easy to use by non-experts in Bioinformatics who can carry out automatic online upload and prediction with 3D structures deposited at PDB (mode 1). We can also study outcomes of Peptide Mass Fingerprinting (PMFs) and MS/MS for query proteins with unknown 3D structures (mode 2). We illustrated the use of MISS-Prot in experimental and/or theoretical studies of peptides from Fasciola hepatica cathepsin proteases or present on 10 Anisakis simplex allergens (Ani s 1 to Ani s 10). In doing so, we combined electrophoresis (1DE), MALDI-TOF Mass Spectroscopy, and MASCOT to seek sequences, Molecular Mechanics + Molecular Dynamics (MM/MD) to generate 3D structures and MISS-Prot to predict PSP scores. MISS-Prot also allows the prediction of PSP proteins in 16 additional species including parasite hosts, fungi pathogens, disease transmission vectors, and biotechnologically relevant organisms.  相似文献   

18.
Visualization of residue positions in protein alignments and mapping onto suitable structural models is an important first step in the interpretation of mutations or polymorphisms in terms of protein function, interaction, and thermodynamic stability. Selecting and highlighting large numbers of residue positions in a protein structure can be time-consuming and tedious with currently available software. Previously, a series of tasks and analyses had to be performed one-by-one to map mutations onto 3D protein structures; STRAP-NT is an extension of STRAP that automates these tasks so that users can quickly and conveniently map mutations onto 3D protein structures. When the structure of the protein of interest is not yet available, a related protein can frequently be found in the structure databases. In this case the alignment of both proteins becomes the crucial part of the analysis. Therefore we embedded these program modules into the Java-based multiple sequence alignment program STRAP-NT. STRAP-NT can simultaneously map an arbitrary number of mutations denoted using either the nucleotide or amino acid sequence. When the designations of the mutations refer to genomic sites, STRAP-NT translates them into the corresponding amino acid positions, taking intron-exon boundaries into account. STRAP-NT tightly integrates a number of current protein structure viewers (currently PYMOL, RASMOL, JMOL, and VMD) with which mutations and polymorphisms can be directly displayed on the 3D protein structure model. STRAP-NT is available at the PDB site and at http://www.charite.de/bioinf/strap/ or http://strapjava.de.  相似文献   

19.
A shape-based Gaussian docking function is constructed which uses Gaussian functions to represent the shapes of individual atoms. A set of 20 trypsin ligand-protein complexes are drawn from the Protein Data Bank (PDB), the ligands are separated from the proteins, and then are docked back into the active sites using numerical optimization of this function. It is found that by employing this docking function, quasi-Newton optimization is capable of moving ligands great distances [on average 7 A root mean square distance (RMSD)] to locate the correctly docked structure. It is also found that a ligand drawn from one PDB file can be docked into a trypsin structure drawn from any of the trypsin PDB files. This implies that this scoring function is not limited to more accurate x-ray structures, as is the case for many of the conventional docking methods, but could be extended to homology models.  相似文献   

20.
The maintenance of protein function and structure constrains the evolution of amino acid sequences. This fact can be exploited to interpret correlated mutations observed in a sequence family as an indication of probable physical contact in three dimensions. Here we present a simple and general method to analyze correlations in mutational behavior between different positions in a multiple sequence alignment. We then use these correlations to predict contact maps for each of 11 protein families and compare the result with the contacts determined by crystallography. For the most strongly correlated residue pairs predicted to be in contact, the prediction accuracy ranges from 37 to 68% and the improvement ratio relative to a random prediction from 1.4 to 5.1. Predicted contact maps can be used as input for the calculation of protein tertiary structure, either from sequence information alone or in combination with experimental information. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号