首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.  相似文献   

2.
S Mickel  V Arena  Jr    W Bauer 《Nucleic acids research》1977,4(5):1465-1482
A series of closed circular (I) plasmid DNAs has been derived from drug resistance factor R12, and the nicked circular (II) and linear (III) derivatives of these molecules prepared by irradiation in the presence of ethidium bromide and by treatment with restriction enzyme EcoRI, respectively. These DNAs encompass the molecular weight range 3.6 to 61 megadaltons. The base compositions range from 45% to 51% (GC) as estimated by buoyant density determinations. The smaller plasmids are significantly less supercoiled (9-10%) than are the larger (12-13%). The gel electrophoretic behavior of the three DNA structural forms was determined as a function of molecular weight in agarose gels of concentrations ranging from 0.7% to 1.6% and at electrophoresis salt concentrations from 0.02 M to 0.08 M sodium acetate. The mobilities of DNAs I and III undergo a reversal relative to each other at a molecular weight which decreases with increasing agarose gel concentration. The molecular weight at which DNA II fails to enter a gel depends upon the ionic strength during electrophoresis but not upon the gel concentration.  相似文献   

3.
The 0.048502 megabase (Mb), primarily double-stranded DNA of bacteriophage lambda has single-stranded, complementary termini (cohesive ends) that undergo either spontaneous intramolecular joining to form open circular DNA or spontaneous intermolecular joining to form linear, end-to-end oligomeric DNAs (concatemers); concatemers also cyclize. In the present study, the effects of polyethylene glycol (PEG) on the cyclization and concatemerization of lambda DNA are determined at temperatures that, in the absence of PEG, favor dissociation of cohesive ends. Circular and linear lambda DNA, monomeric and concatemeric, are observed by use of pulsed field agarose gel (PFG) electrophoresis. During preparation of lambda DNA for these studies, hydrodynamic shear-induced, partial dissociation of joined cohesive ends is fortuitously observed. Although joined lambda cohesive ends progressively dissociate as their temperature is raised in the buffer used here (0.1 M NaCl, 0.01 M sodium phosphate, pH 7.4, 0.001 M EDTA), when PEG is added to this buffer, raising the temperature sometimes promotes joining of cohesive ends. Conditions for promotion of primarily either cyclization or concatemerization are described. Open circular DNAs as long as a 7-mer are produced and resolved. The concentration of PEG required to promote joining of cohesive ends decreases as the molecular weight of the PEG increases. The rate of cyclization is brought, the first time, to values that are high enough to be comparable to the rate observed in vivo. For double-stranded DNA bacteriophages that have a linear replicative form of DNA (bacteriophage T7, for example), a suppression, sometimes observed here, of cyclization mimics a suppression of cyclization previously observed in vivo. The PEG, temperature effects on DNA joining are explained by both the excluded volume of PEG random coils and an increase in this excluded volume that occurs when temperature increases.  相似文献   

4.
Summary Mitochondrial (mt) plasmid-like DNA was found in most of more than 100 rice cultivars (Oryza sativa L.) by the use of 0.7% agarose gel electrophoresis (AGE). The DNA varied in molecular weight and number. By electron microscopy, small circular DNAs of different sizes could be detected in addition to the DNAs of high molecular weight, even in cultivars in which mt plasmid-like DNA was not detected by AGE. The detection of the mt plasmid-like DNAs by AGE did not depend on their presence or absence, but on their high stoichiometry. The relationship between cytoplasms with mt plasmid-like DNAs and varietal (for example, Indica rice) groups was close. The geographical distribution of cytoplasms is discussed.  相似文献   

5.
Ultraviolet circular dichroism spectra have been obtained for native and heat-denatured Drosophila virilis satellite DNAs I, II and III. Gall &; Atherton (1974) have found that these DNAs have simple, unique sequences. We compare here the circular dichroism spectra of these satellite sequences with the circular dichroism spectra of synthetic DNAs of simple sequences which are combined in first-neighbor calculations. We also apply an analytical procedure for determining nearest-neighbor frequencies from the DNA spectra (Allen et al., 1972). The results are an indication of the potential usefulness and present limitations of circular dichroism measurements in confirming or determining the nearestneighbor frequencies of satellite DNAs of simple sequences.  相似文献   

6.
We have developed an alkaline agarose gel method for quantitating single strand breaks in nanogram quantities of nonradioactive DNA. After electrophoresis together with molecular length standards, the DNA is neutralized, stained with ethidium bromide, photographed, and the density profiles recorded with a computer controlled scanner. The median lengths, number average molecular lengths, and length average molecular lengths of the DNAs can be computed by using the mobilities of the molecular length standards. The frequency of single strand breaks can then be determined by comparison of the corresponding average molecular lengths of DNAs treated and not treated with single strand break-inducing agents (radiation, chemicals, or lesion-specific endonuclease). Single strand break yields (induced at pyrimidine dimer sites in uv-irradiated human fibroblasts DNA by the dimer-specific endonuclease from Micrococcus luteus) from our method agree with values obtained for the same DNAs from alkaline sucrose gradient analysis. The method has been used to determine pyrimidine dimer yields in DNA from biopsies of human skin irradiated in situ. It will be especially useful in determining the frequency of single strand breaks (or lesions convertible to single strand breaks by specific cleaving reagents or enzymes) in small quantities of DNA from cells or tissues not amenable to radioactive labeling.  相似文献   

7.
A rapid and inexpensive method for the electroelution of DNA fragments from agarose gels is described. DNA fragments were separated by agarose gel electrophoresis and visualized by staining with ethidium bromide. Selected DNA fragments were placed into electroeluter tubes capped with dialysis membrane and electroeluted into a small volume of buffer using a conventional horizontal gel electrophoresis apparatus. The method successfully eluted and concentrated DNA fragments with molecular weights ranging from 2.7 to 13.9 MDa in 3 h.  相似文献   

8.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

9.
Sarkar R  Pal SK 《Biomacromolecules》2007,8(11):3332-3339
We report structural and dynamical aspects of DNAs from various sources including synthetic oligonucleotides in bulk buffer and as a complex with histone1 (H1). High-resolution transmission electron microscopic (HRTEM) studies reveal the structural change of the DNAs upon complexation with H1 leading to formation of compact-globular and hollow-toroidal particles. In order to explore the functionality of ligand binding of the DNAs and their complexes with H1, we have used two biologically common fluorescent probes Hoechst 33258 (H33258) and Ethidium (EB) as model ligands. Picosecond resolved fluorescence and polarization gated anisotropy studies examined that the minor groove binding of H33258 to the genomic DNA-H1 complex remains almost unaltered. However, the intercalative interaction of EB with the DNA in the complex is severely perturbed compared to that with the DNA in bulk buffer. Time-dependent solvochromic effect of the probe H33258 further elucidates the dynamical solvation, which is reflective of the overall environmental relaxation of the DNAs upon condensation by H1. We have also performed circular dichroism (CD) studies on the DNAs and their complexes with H1, which reveal the change in conformation of the DNAs in the complexes. Our studies in the ligand-binding mechanisms of the DNA-H1 complex are important to understand the mechanism of drug binding to linker DNA in condensed chromatin.  相似文献   

10.
Pulsed-field gel electrophoresis of circular DNA.   总被引:5,自引:0,他引:5  
Mobility of supercoiled (form I) and nicked circular (form II) plasmid DNAs was determined on two major forms of pulsed-field electrophoresis, CHEF and OFAGE. Plasmids with molecular lengths ranging from 2.30 to 17.8 kilobase pairs (kb) were used with Saccharomyces cerevisiae chromosomes as standards. Agarose gel concentrations were varied from 0.3 to 2.0 percent, with higher percentage gels resolving forms I and II of smaller plasmids. The pulsing range of 3.7 to 240 seconds resulted in quite variable Saccharomyces chromosomal mobilities on both 0.5 and 1.0 percent gels, while both form I and II of all plasmid DNAs showed relatively constant mobilities with some increase at the shortest pulse times. Using a 30 second pulse time and gel concentrations of at least 1.0 percent, the usual order of migration of plasmid forms for a 17.8 kb plasmid could be changed. We interpret this result as an increase in the relative mobility of form II in our pulsed-field gel conditions.  相似文献   

11.
Ethidium DNA agarose gel electrophoresis: how it started   总被引:1,自引:0,他引:1  
Borst P 《IUBMB life》2005,57(11):745-747
We started ethidium DNA agarose gel electrophoresis when our ultracentrifuge broke down and we needed an alternative method to check the quality of our mitochondrial DNA preparations. Agarose proved convenient for sizing DNA; ethidium in gel and buffer allowed visualization of DNA bands immediately after the run and improved the separation of the closed and open duplex forms of mitochondrial DNA circles. At smaller gel pore size mitochondrial DNA circles were excluded from the gel, whereas long linear DNAs were not. We concluded that the linear DNAs 'crawl like snakes head on through the gel'. This paper reviews some of the early experiments preceding the introduction of ethidium agarose gel electrophoresis.  相似文献   

12.
The size and structure of the covalently closed circular chloroplast DNAs (ctDNA) from pea, lettuce, and spinach plants, have been studied by analytical ultracentrifugation. The values of so20,w,Na+ of the native and denatured forms of the open and closed circular DNAs from these plants have been determined. The absolute molecular weight of purified closed circular pea ctDNA monomers has been determined by buoyant equilibrium sedimentation to be 89.1 (S.D. +/- 0.7)-10(6). The value of the so20,w,Na+ of open circular pea ctDNA and its molecular weight, in conjunction with corresponding values for other sizes of circular DNA, has been used to derive an empirical relationship between so20,w,Na+ and molecular weight for open circular DNAs. Using this relationship, the molecular weights of lettuce and spinach ctDNAs have been determined to be 98.2 (S.D. +/- 1.5)-10(6) and 97.2 (S.D. +/- 1.5)-10(6), respectively. At pH values 12.7 and 13, closed circular lettuce and pea ctDNAs have been found to exist as mixtures of reversibly and irreversibly denatured closed circular DNAs.  相似文献   

13.
Although the typical mitochondrial DNA (mtDNA) is portrayed as a circular molecule, a large number of organisms contain linear mitochondrial genomes classified by their telomere structure. The class of mitochondrial telomeres identified in three yeast species, Candida parapsilosis, Pichia philodendra and Candida salmanticensis, is characterized by inverted terminal repeats each consisting of several tandemly repeating units and a 5' single-stranded extension. The molecular mechanisms of the origin, replication and maintenance of this type of mitochondrial telomere remain unknown. While studying the replication of linear mtDNA of C.parapsilosis by 2-D gel electrophoresis distinct DNA fragments composed solely of mitochondrial telomeric sequences were detected and their properties were suggestive of a circular conformation. Electron microscopic analysis of these DNAs revealed the presence of highly supertwisted circular molecules which could be relaxed by DNase I. The minicircles fell into distinct categories based on length, corresponding to n x 0.75 kb (n = 1-7). Similar results were obtained with two other yeast species (P.philodendra and C. salmanticensis) which possess analogous telomeric structure.  相似文献   

14.
A rapid alkaline extraction procedure for screening recombinant plasmid DNA.   总被引:2795,自引:408,他引:2795       下载免费PDF全文
A procedure for extracting plasmid DNA from bacterial cells is described. The method is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day yet yields plasmid DNA which is pure enough to be digestible by restriction enzymes. The principle of the method is selective alkaline denaturation of high molecular weight chromosomal DNA while covalently closed circular DNA remains double-stranded. Adequate pH control is accomplished without using a pH meter. Upon neutralization, chromosomal DNA renatures to form an insoluble clot, leaving plasmid DNA in the supernatant. Large and small plasmid DNAs have been extracted by this method.  相似文献   

15.
Amplification of Hot DNA segments in Escherichia coli   总被引:1,自引:0,他引:1  
In Escherichia coli, a replication fork blocking event at a DNA replication terminus (Ter) enhances homologous recombination at the nearby sister chromosomal region, converting the region into a recombination hotspot, Hot, site. Using a RNaseH negative (rnhA-) mutant, we identified eight kinds of Hot DNAs (HotA-H). Among these, enhanced recombination of three kinds of Hot DNAs (HotA-C) was dependent on fork blocking events at Ter sites. In the present study, we examined whether HotA DNAs are amplified when circular DNA (HotA plus a drug-resistance DNA) is inserted into the homologous region on the chromosome of a rnhA- mutant. The resulting HotA DNA transformants were analysed using pulsed-field gel electrophoresis, fluorescence in situ hybridization and DNA microarray technique. The following results were obtained: (i) HotA DNA is amplified by about 40-fold on average; (ii) whereas 90% of the cells contain about 6-10 copies of HotA DNA, the remaining 10% of cells have as many as several hundred HotA copies; and (iii) amplification is detected in all other Hot DNAs, among which HotB and HotG DNAs are amplified to the same level as HotA. Furthermore, HotL DNA, which is activated by blocking the clockwise oriC-starting replication fork at the artificially inserted TerL site in the fork-blocked strain with a rnhA+ background, is also amplified, but is not amplified in the non-blocked strain. From these data, we propose a model that can explain production of three distinct forms of Hot DNA molecules by the following three recombination pathways: (i) unequal intersister recombination; (ii) intrasister recombination, followed by rolling-circle replication; and (iii) intrasister recombination, producing circular DNA molecules.  相似文献   

16.
When a solution containing agarose and DNA at 65 °C is allowed to solidify in the well of a preformed gel, it is found that circular DNAs become “trapped” in the newly formed matrix and resist electrophoretic migration. This finding provides an independent method for the characterization of circular DNA. The trapping phenomenon is dependent on the size, conformation, and concentration of circular DNAs as well as on the concentration of agarose. It is demonstrated that this technique can be used as a sensitive assay for detecting circular DNA.  相似文献   

17.
The majority of cellular DNAs in eukaryotes are organized into linear chromosomes. In addition to chromosome DNAs, genes also reside on extrachromosomal elements. The extrachromosomal DNAs are commonly found to be circular, and they are referred to as extrachromosomal circular DNAs (eccDNAs). Recent technological advances have enriched our knowledge of eccDNA biology. There is currently increasing concern about the connection between eccDNA and cancer. Gene amplification on eccDNAs is prevalent in cancer. Moreover, eccDNAs commonly harbor oncogenes or drug resistance genes, hence providing a growth or survival advantage to cancer cells. eccDNAs play an important role in tumor heterogeneity and evolution, facilitating tumor adaptation to challenging circumstances. In addition, eccDNAs have recently been identified as cell-free DNAs in circulating system. The altered level of eccDNAs is observed in cancer patients relative to healthy controls. Particularly, eccDNAs are associated with cancer progression and poor outcomes. Thus, eccDNAs could be useful as novel biomarkers for the diagnosis and prognosis of cancer. In this review, we summarize current knowledge regarding the formation, characteristics and biological importance of eccDNAs, with a focus on the molecular mechanisms associated with their roles in cancer progression. We also discuss their potential applications in the detection and treatment of cancer. A better understanding of the functional role of eccDNAs in cancer would facilitate the comprehensive analysis of molecular mechanisms involved in cancer pathogenesis.  相似文献   

18.
Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid–base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20–25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10–100 bp): high voltages and short run times produced sharper bands and higher resolution.  相似文献   

19.
The isolation of covalently closed circular (ccc) DNA free of contamination by RNA and other forms of DNA is fundamental to molecular biology. A variety of methods have been explored but CsCl density-gradient centrifugation remains the method most widely used for preparative scale resolution. The process is expensive, time-consuming, requires the use of large amounts of the carcinogen ethidium bromide, and is subject to considerable variation in yield and purity. To avoid these problems, we have devised a procedure for the preparation of cell lysates which results in consistently good yields of biologically active ccc DNA minimally contaminated with chromosomal DNA fragments and RNA. Lysates are deproteinized, precipitated with CaCl2 to remove rRNA, concentrated by ethanol precipitation, and applied to a Sephacryl S-1000 column which resolves chromosomal fragments, open circular plasmid DNA, and residual RNA from the ccc DNA. We have found that substituting the gel filtration column for CsCl density-gradient centrifugation results in substantially better purification as well as reducing processing time, cost, and degree of difficulty. The time required from harvest of cells to final recovery of DNA is about 16 h. We have used the method to isolate plasmids from 4.4 to 12 kb and, with slight modifications, recombinant M13 replicative form DNAs.  相似文献   

20.
F K Yoshimura  R A Weinberg 《Cell》1979,16(2):323-332
Both linear (form III) and closed circular (form I) viral DNAs obtained from mouse cells infected with Moloney murine leukemia virus were cleaved by Sal I, Sma I, Bam HI and Pst I restriction endonucleases. DNA fragments generated by these cleavages were ordered with respect to the 5' and 3' ends of the RNA genome by several techniques, including comparisons of the DNA fragments from cleavages of the linear and closed circular forms, double digestions using different combinations of enzymes and the use of an RNA probe specific for the 3' end. DNA from Hirt extractions of infected cells yielded a discrete species of linear viral DNA whose size was determined by agarose gel electrophoresis to be 5.7 x 10(6) daltons. In the course of characterizing the closed circular DNA, we observed two form I DNA molecules. The larger molecule was the same size as the linear DNA. The second molecule migrated faster on agarose gels and was the predominant species of the two closed circular DNAs. Using the restriction endonuclease maps which we derived, we demonstrate that this novel form I DNA is a smaller homogeneous species of viral DNA, missing about 600 nucleotides found in the linear and larger closed circular DNA molecules. We have localized the site of this missing DNA piece to be at either one or both ends of the linear viral DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号