首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of the material present in human serum which is responsible for inhibition of binding of desialylated glycoproteins to rat hepatocyte membranes was accomplished by means of affinity chromatography using Sephadex to which the galactose-specific lectin, Ricinus Communis Agglutinin (RCAI) was covalently bound. RCAI-Sephadex was capable of extraction of virtually all of the inhibitory activity from cirrhotic serum. The RCA I-bound inhibitory activity could be eluted with 0.05 M D-galactose. The D-galactose eluate when subjected to radioimmunoelectrophoresis against a number of specific antibodies to human serum glycoproteins produced arcs corresponding to alpha 1-acid glycoprotein, alpha2-macroglobulin, IgG, IgA, and IgM. In another experiment putative terminal galactosyl groups of desialylated glycoproteins in the D-galactose eluate from cirrhotic serum exposed to RCAI-Sephadex were labelled with tritiated borohydride after treatment with galactose oxidase. Subsequent gel electrophoresis showed peaks of radioactivity throughout the area of the gel corresponding to protein molecular weights of the 19 S, 7 S, and 4 S classes. It thus appears that a heterogeneous population of desialylated serum glycoproteins accounts for the inhibition of binding of desialylated glycoprotein to the hepatocyte membrane and that these desialylated glycoproteins are present in small amounts in normal human serum and in greatly increased quantities in serum from patients with cirrhosis.  相似文献   

2.
1. Electron microscope autoradiography indicated that L-[3H]fucose and D-[3H]glucosamine were both incorporated into cell-surface-associated glycoconjugates in the epidermis of cultured pig skin slices. 2. Acid hydrolysis and paper chromatography of skin homogenates confirmed that there was little metabolic conversion of the labeled precursors to other sugars. 3. Epidermis was separated from dermis using CaCl2, and was extracted with 8 M-urea/5% (w/v) sodium dodecyl sulphate and was then analysed by gel electrophoresis. The major component labelled with D-[3H]glucosamine had an apparent molecular weight in excess of 200 000. This material was not labelled with L-[3H]fucose. Lower molecular-weight components were labelled to a similar extent with both L-[3H]fucose and D-[3H]glucosamine. 4. The high molecular-weight material labelled with D-[3H]glucosamine was released into the medium when the epidermal cells were dispersed with trypsin, indicating that it was either surface-associated or was extracellular. It was also labelled with D-[14C]glucuronic acid, 35SO4(2-) and to a small extent with 14C-labelled amino acids indicating that it contained glycosaminoglycans derived from epidermal proteoglycans. This was confirmed by the fact that it was degraded by testicular hyaluronoglucosidase. It was not present in isolated membranes but was recovered in the soluble fraction from epidermal homogenates. It is therefore only very loosely bound at the cell surface or is present in the extracellular spaces. 5. Membrane-bound [3H]glycoproteins were identified after differential centrifugation of epidermal homogenates. The radioactivity profiles of membrane glycoproteins were similar whether L-[3H]fucose or D-[3H]glucosamine were used and both consisted of a major heterogeneous peak in the apparent mol.wt. range 70 000--150 000. [3H]Glycoproteins in this molecular-weight range were also major components of a plasma-membrane-enriched fraction. These glycoproteins were probably bound to the membrane by hydrophobic interactions, since they were only solubilized by treatment with detergent or organic solvent. They contained terminal sialic acid residues, since they were degraded by neuraminidase.  相似文献   

3.
Marc J  Sharkey DE  Durso NA  Zhang M  Cyr RJ 《The Plant cell》1996,8(11):2127-2138
The organization and function of microtubules in plant cells are important in key developmental events, including the regulation of directional cellulose deposition. Bridges connecting microtubules to each other and to membranes and other organelles have been documented by electron microscopy; however, the biochemical and molecular nature of these linkages is not known. We have partitioned proteins from a suspension culture of tobacco into cytosolic and membrane fractions, solubilized the membrane fraction with a zwitterionic detergent, and then used affinity chromatography and salt elution to isolate tubulin binding proteins. Dark-field microscopy of in vitro-assembled microtubules showed that the eluted proteins from both fractions induce microtubule bundling and, in the presence of purified tubulin, promote microtubule elongation. Gel electrophoresis of the eluted proteins revealed two distinct sets of polypeptides. Those in the membrane eluate included unique bands with apparent molecular masses of 98, 90, and 75 kD in addition to bands present in both eluates. The cytosolic eluate, in contrast, typically included relatively smaller proteins. The eluted proteins also bound to taxol-stabilized microtubules. Initial immunological characterization using monoclonal antibodies raised against the 90-kD polypeptide showed that it is colocalized in situ with cortical microtubules in tobacco protoplast ghosts.  相似文献   

4.
Cultured mycelia of the edible mushroom Tricholoma lobayense were extracted with cold saline. Proteins were precipitated from the extract by addition of (NH4)2SO4. The precipitate was dissolved and dialyzed before ion exchange chromatography on DEAE-cellulose. Ability to inhibit translation in a rabbit reticulocyte lysate was located in the unadsorbed fraction which was then subjected to affinity chromatography on Affi-gel Blue gel. The strongest activity was again retained by the unadsorbed fraction. Ion exchange chromatography on CM-cellulose resulted in fractionation of this fraction into an unadsorbed and two adsorbed peaks. Cell-free translation inhibitory activity was concentrated in the fraction eluted with 100 mM NaCl in 10 mM NH4OAc (pH 5.4). The translation-inhibitory protein possessed a molecular weight of 30 kDa as estimated by gel filtration using a fast protein liquid chromatography system and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

5.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with alpha-methylmannoside, constitute about 25--30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chloride columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with alpha-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

6.
Sepharose 4B affinity chromatography of Trichosanthes anguina seed extract and subsequent elution with galactose resulted in the isolation of an apparently single lectin with molecular weight of 45,000 +/- 700. However, major amount of the hemagglutinating activity was recovered as unadsorbed protein fraction. High affinity matrix Lactamyl Seralose could retain most of the galactose specific lectin activity from fraction 'A' which was eluted with lactose. It is evident from PAGE and SDS-PAGE analysis of the purified protein that T. anguina seeds contains a mixture of isolectins ranging in molecular weight from 30,000 to 50,000 +/- 1300. Periodic Acid Schiff's staining of the gels revealed this lectin complex to be a combination of glycosylated and non-glycosylated lectins. Two Isolectins SLc and IEL from within this complex have been isolated by affinity and ion exchange chromatography respectively. Apparent homology of these two lectins is indicated by their identical molecular weight (45 kDa), sub unit composition, non glycoprotein nature and immunological identity. However, these two lectins show minor differences in their biological and physicochemical properties. The peptide maps of the two lectins obtained after digestion with Trypsin and Pronase E also indicate minor changes in the primary structure.  相似文献   

7.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

8.
The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.  相似文献   

9.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

10.
Rat brain cytosol was applied to a heparin column and eluted with 0.9 M-NaCl. The total binding activity of [3H]inositol 1,4,5-trisphosphate to the eluate was increased about 6-fold compared with the original cytosol. When the eluate was mixed with a flow-through fraction from the heparin column, however, the activity returned to the original level, suggesting that the flow-through fraction contained an inhibitory factor(s) which prevented the binding. The factor(s) was purified by sequential column chromatography using gel permeation, a hydrophobic gel, and finally, a hydroxylapatite gel. Silver staining of sodium dedecyl sulfate gel electrophoresis of the sample thus purified showed a broad band located between the authentic molecular weight markers of 580 and 390 k. A carbohydrate staining method showed that the factor is a glycoprotein.  相似文献   

11.
Purification of an active opioid-binding protein from bovine striatum   总被引:12,自引:0,他引:12  
We report the purification to apparent homogeneity of an active opioid-binding protein solubilized from bovine striatal membranes. The purification was accomplished in two steps: affinity chromatography on beta-naltrexylethylenediamine (NED)-CH-Sepharose 4B followed by lectin affinity chromatography on wheat germ agglutinin-agarose. The ligand affinity-purified fraction exhibits stereospecific and saturable binding of opiates and is heat-sensitive. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the NED-purified material gave 6-8 bands by silver staining or autoradiography of radioiodinated material. Under nondenaturing conditions, the NED-purified material elutes in a molecular mass range between 300 and 350 kDa from gel exclusion chromatography on Ultrogel AcA-34. The specific activity of the affinity-purified fraction (800-1500 pmol/mg protein) is enriched 4000 to 7000-fold over that of the membrane-bound or unpurified soluble receptor. Further purification (10-20-fold) is achieved by chromatography of the NED eluate on wheat germ agglutinin-agarose. The eluted fraction shows a single protein (65 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified material is an acidic glycoprotein with a pI of 6.0-6.3 and binds opiates with a specific activity (12,000-15,000 pmol/mg) that is 65,000 to 75,000-fold greater (theoretical, 77,000-fold) than that of the membrane-bound or crude soluble receptors.  相似文献   

12.
When calf rennet containing approximately 15% pepsin was applied to a Cibacron Blue agarose column at pH 5.5 in a low salt medium, pepsin passed through unadsorbed while chymosin was bound to the gel in the column. After washing the column, the bound chymosin was eluted with 1.7 M NaCl or 50% (v/v) aqueous ethylene glycol. The salt eluate was analyzed and found to contain greater than 97% pure chymosin. The fraction that passed through unadsorbed was found to contain greater than 96% pure pepsin. Thus a complete separation of chymosin and pepsin was effected by this technique without having to destroy either enzyme. Both enzymes are highly negatively charged at pH 5.5 but the separation does not arise from anion exchange since the gel functions as a cation exchanger. The separation appears to result from a combination of hydrophobic and electrostatic interactions of chymosin with Blue agarose. It is suggested that the enhanced affinity of chymosin to the Blue gel over pepsin may arise from topographically specified interaction between chymosin and the blue chromophore. Differential surface hydrophobicity may also play a key role, since in the presence of 0.7 M Na2SO4 the same behavior as at low ionic strength is observed.  相似文献   

13.
1. The presence of concanavalin A binding sugars in the glycoprotein component of a partially purified (Na++K+) ATPase preparation from dog fish salt gland was demonstrated by binding of a Triton X-100 extract of the enzyme and isolated glycoprotein to concanavalin A-Sepharose, and by binding of membrane-associated enzyme to free concanavalin A. 2. The binding of concanavalin A to the glycoprotein in both membrane-associated enzyme and a Lubrol extract of the enzyme had no effect on (Na++K+)-ATPase activity. Binding was completely inhibited by methyl-alpha-mannoside. Also, enzyme activity was not affected by removal of 50% of glycoprotein sialic acid by neuraminidase. These results suggest that the carbohydrate moiety of the glycoprotein does not play a catalytic role in the (Na++K+)-ATPase. 3. When a Triton X-100 extract of (Na++K+)-ATPase was chromatographed on concanavalin A-Sepharose, 37% of total protein was bound to the column and eluted by methyl-alpha-mannoside. The bound fraction was free of lipid, and contained not only the glycoprotein but also the large protein which is the catalytic subunit of the enzyme, and small amounts of other membrane derived proteins. The ratio of large protein to glycoprotein, as measured by the relative Coomassie blue absorbance of the two proteins separated by gel electrophoresis, was the same in the bound fraction as in the membrane. These results suggest that the glycoprotein and lareg protein are either associated together in the membrane or become associated during lipid replacement by Triton.  相似文献   

14.
We have previously shown that the liver endothelium can desialylate the glycoprotein transferrin (Tf). In the present work we provide evidence that asialotransferrin obtained by this means behaves differently on Ricinus communis agglutinin (RCA120) lectin affinity chromatography from asialotransferrin obtained by either neuraminidase treatment or acid hydrolysis. Purified rat transferrin was radiolabelled either with 125I (protein moiety) or with 3H (sialyl residues), and subsequently saturated with iron. It was then passed through an RCA120-agarose column to isolate the fully sialylated component. Sialylated Tf was then desialylated either by incubation with purified rat liver endothelium or, in vitro, by neuraminidase treatment or by acid hydrolysis. The protein was again subjected to RCA120 column chromatography. Although both neuraminidase treatment and acid hydrolysis almost completely desialylated the glycoprotein (as evidenced by near absence of 3H label), the glycoprotein was not retained by the RCA120-agarose column. By contrast, liver endothelium partially desialylated the glycoprotein, but this desialylated fraction was retained by the RCA120-agarose column. These results suggest that desialylation with neuraminidase or acid hydrolysis may be inadequate for functional studies of asialotransferrin.  相似文献   

15.
Induction of long-term potentiation (LTP) in hippocampal slices of rats caused an increase in both protein synthesis and glycoprotein fucosylation by 38 and 34%, respectively. The enhanced incorporation of [3H]fucose into glycoproteins observed 1 h after tetanization was abolished in the presence of the dopamine D1 receptor antagonist SCH23390 during stimulation whereas the LTP-induced increase of protein synthesis was not influenced by this drug. The enhanced insertion of [3H]fucose into hippocampal glycoproteins 1 h after tetanization was paralleled by an increase in the activity of the fucose metabolizing enzyme, fucokinase. In contrast no changes in protein and glycoprotein synthesis were detectable 5 h after tetanization of the slices. The results provide evidence that in addition to an enhanced protein synthesis a dopamine (D1) mediated increase in glycoprotein fucosylation is necessary for the maintenance of the late stage of LTP.  相似文献   

16.
Type-1 fimbriated Salmonella typhimurium was found to adhere to rat intestinal brush border membrane in a mannose sensitive manner. The maximum binding of the purified fimbriae observed with the rat illeal enterocytes was inhibited by 69.2% in presence of D-mannose. Brush border membrane from rat illeum was isolated, delipidified, solubilised and fractionated by affinity chromatography on type-1 fimbriae coupled Sepharose CL 4B column. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of the material eluted from the column with D-mannose revealed a single band of molecular weight 60 kDa. The direct binding of this affinity eluted glycoprotein to the purified type-1 fimbriae was demonstrated by a modified Western blot experiment. Our findings suggest that the 60 kDa glycoprotein may serve as a receptor for the type-1 fimbriae in the rat intestinal brush border membrane and thereby may help in mediating bacterial adherence to the host epithelium.  相似文献   

17.
Submitochondrial particles were prepared from bovine heart mitochondria, solubilized with Triton X-114 in the presence of lipids and submitted to hydroxylapatite chromatography. The eluate obtained, containing a mixture of mitochondrial carriers, was processed further by affinity chromatography using as ligand p-aminophenylsuccinate coupled via a diazo bond to aminohexyl-Sepharose 4B. The activity of the dicarboxylate exchanger was measured after reconstitution into asolectin vesicles at each step of the purification procedure. All samples studied were found to display substrate and inhibitor specificity similar to those described for the dicarboxylate carrier in mitochondria. The specific activity of the final material eluted from the affinity column was found to be about 1000-times higher than that of the Triton X-114 extract of submitochondrial particles. SDS-polyacrylamide gel electrophoresis analysis of the affinity chromatography eluate showed the presence of only two polypeptides.  相似文献   

18.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5-10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50-100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes less than smooth microsomes less than zymogen granules. Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptides was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules. Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

19.
A procedure has been developed for the isolation of Newcastle disease virus (NDV) envelope proteins. The two surface glycoproteins and the non-glycosylated membrane protein were solubilized with 2% Triton X-100 and 1 m KCl. Removal of the KCl by dialysis yielded by precipitation a pure preparation of the non-glycosylated membrane protein, which is insoluble in solutions of low ionic strength. The soluble fraction consisting of the two glycoproteins possessed full neuraminidase and hemagglutinating activities. The two glycoproteins could be separated by rate zonal sedimentation in a sucrose gradient containing 1% Triton X-100 and 1 m KCl. Under these conditions, the sedimentation coefficient of the larger glycoprotein, virus protein 1, was 9.3s, and that of the smaller, virus protein 2, was 6.1s. Both hemagglutinating and neuraminidase activities were associated with virus protein 1; virus protein 2 had neither activity. The results suggest that both activities reside on a single NDV glycoprotein. Similar results were obtained previously with another paramyxovirus, simian virus 5. These findings suggest that the association of hemagglutinating and neuraminidase activities with one glycoprotein is a general property of the paramyxovirus group.  相似文献   

20.
Distribution of glycocompounds in human spermatozoa was studied by using fluorescent lectin-conjugates. Con A bound predominantly to acrosomal and posterior head regions whereas RCA I bound to the acrosomal region of intact spermatozoa, stained in suspension. Other lectins used (LCA, WGA, SBA, PNA) stained the the entire sperm surface. In airdried sperm smears binding of both Con A and RCA I were identical with the staining pattern obtained with living cells whereas LCA, WGA, SBA and PNA now bound heavily into acrosomal region. As a similar staining pattern was obtained with permeabilized sperm cells, this staining is apparently due to binding to intracellular structures. The efficiency of Lens culinaris agglutinin affinity chromatography in purification of human sperm glycoproteins was tested after their external radiolabelling with the neuraminidase/galactose oxidase/sodium borohydride method. 22% of applicated radioactivity could be eluted from the column with the specific inhibitory saccharide, and most of the radiolabelled surface glycoproteins of the whole sperm lysate, were also present in the LCA affinity column eluate. LCA affinity chromatography seems thus be an effective method to enrich membrane glycoproteins of human spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号