首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetic and lactic acids and BioAdd, a commercial preparation of formic and propionic acid, were tested at a concentration of 0.1% (w/w) at 20, 30, 40 and 50 degrees C and in the presence of organic material for bactericidal activity against Salmonella serotype Kedougou. BioAdd was the most active of the solutions at all temperatures, followed by lactic acid and acetic acid. The presence of horse blood at all four temperatures, and milk and serum at 50 degrees C, did not greatly affect the antibacterial activity of the acids although yeast extract (50 degrees C) provided some protection for the salmonella. Acid activity was related to low pH values although the bactericidal activity of acetic acid with blood and milk was greater than the unadulterated acid even though the pH was 0.4 units higher.  相似文献   

2.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HC1 to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20°, 10°, 7° and 4°C for 21 d was in the ranges 4.18–4.36, 4.26–4.50, 4.36–4.83 and 4.42–4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/1 acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/1 citric acid adjusted to pH values between 41 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/1 lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic > lactic > citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

3.
The survival of Yersinia enterocolitica at sub-optimal temperatures (0–23°C) and growth inhibitory pH values, achieved using a range of acidulants, was investigated. At a given pH, survival was greater the lower the temperature. Sulphuric and citric acids had lower bactericidal activity than acetic and lactic acids and in nearly all cases where the four acids could be compared at the same pH the order of bactericidal activity was acetic > lactic > citric > sulphuric. Attempts to model this behaviour by a negative square root relationship gave good correlation coefficients for plots of the square root of death rate against temperature at different combinations of pH and acidulant but so too did several other functions of death rate. The high coefficient of variation for T 0 determined from square root plots prevented construction of a combined temperature/pH model similar to that already described for growth.  相似文献   

4.
J.C. DE REU, F.M. ROMBOUTS AND M.J.R. NOUT. 1995. During the soaking of soya beans according to an accelerated acidification method organic acids were formed, resulting in a pH decrease from 6·0 to 3·9. After 24 h of fermentation at 30°C, lactic acid was the major organic acid (2·1% w/v soak water), while acetic acid (0·3% w/v soak water) and citric acid (0·5% w/v soak water) were also found. During cooking with fresh water (ratio raw beans: water, 1: 6·5) the concentrations of lactate/lactic acid and acetate/acetic acid in the beans were reduced by 45% and 51%, respectively.
The effect of organic acids on the germination of Rhizopus olgosporus sporangiospores was studied in liquid media and on soya beans. Germination in aqueous suspensions was delayed by acetic acid: within 6 h no germination occurred at concentrations higher than 0·05% (w/v incubation medium), at pH 4·0. When soya beans were soaked in the presence of acetic acid, the inhibitory concentration depended on the pH after soaking. Lactic acid and citric acid enhanced germination in liquid medium, but not in tempe.
Inoculation of soya beans with R. oligosporus at various temperatures followed by incubation at 30°C resulted in both increased and decreased periods for the lag phase of fungal growth. A maximum difference of 3 h lag phase was found between initial bean temperatures of 25 and 37°C.
When pure cultures of homofermentative lactic acid bacteria were used in the initial soaking process, less lactic acid and acetic acid was formed during soaking than when the accelerated acidification method was used. This resulted in a reduction of the lag phase before growth of R. oligosporus by up to 4·7 h.  相似文献   

5.
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations × three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37°C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37°C. At 30°C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37°C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and ≥2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.  相似文献   

6.
Susceptibility of the rabbit enteropathogenic strain Escherichia coli C6 (O128 serogroup) to C6-C14 fatty acids, oleic, citric, lactic and fumaric acid at 5 mg/mL was determined by the plating technique in the near-neutral pH region (pH approximately 6.5), and in a weakly acid and acid environment (pH 5.4 +/- 0.1 and 2.2-2.5, respectively). In the near-neutral pH region caproic and caprylic acid reduced the concentration of viable cells by 3 and 6 orders, respectively. At lower pH the bactericidal effect of caproic acid remained similar, but caprylic acid decreased the concentration of viable cells to < 100/mL. The bactericidal activity of capric acid was low at pH 6.5 but increased at pH 5.3. High environmental acidity was intrinsically bactericidal and at very low pH the effects of fatty acids were thus less pronounced. Citric acid reduced the counts of viable cells to 1/10. Antimicrobial activity of other acids examined was marginal or absent. Medium-chain fatty acids, caprylic and, to a lesser extent, also caproic and capric acid were better antimicrobials than other organic acids examined; the antimicrobial activity of fatty acids toward the C6 strain was pH-dependent. Beneficial effects of citric, lactic and fumaric acid reported by animal nutritionists are thus probably related to factors other than their direct antimicrobial action.  相似文献   

7.
Changes in the pH value and lactic acid content of the uninoculated, cultured Nigerian whole milk product, 'Nono', during incubation at room temperature (27°± 2°C) for 120 h were monitored. The pH decreased from 6·78 ± 0·19 to 4·30 ± 0·11 while the lactic acid content increased from 0·32 ± 0·04% to 2·50 ± 0·02% (w/v). This was accompanied by souring and curdling of the milk particles.  相似文献   

8.
The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH ≤5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations ≥0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0–5.5 are not as great as that reported thus far using laboratory media.  相似文献   

9.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HCl to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20 degrees, 10 degrees, 7 degrees and 4 degrees C for 21 d was in the ranges 4.18-4.36, 4.26-4.50, 4.36-4.83 and 4.42-4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/l acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/l citric acid adjusted to pH values between 4.1 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/l lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic greater than lactic greater than citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

10.
A facultative psychrotrophic lactic acid bacterium isolated from fresh fish was identified as Carnobacterium piscicola on the basis of carbohydrate utilization, G + C content and 16S RNA analysis. Its bacteriocin, designated carnocin UI49, is produced during the mid-exponential phase of growth at temperatures between 15°C and 34°C. Carnocin UI49 is active against a large number of closely-related lactic acid bacteria including carnobacteria, lactobacilli, pediococci and lactococci. Furthermore, the bacteriocin has a bactericidic mode of action which results in lysis of sensitive cells. Maximum bactericidal activity is observed at 34°C with a decrease in activity down to 15°C where it is completely abolished.  相似文献   

11.
AIMS: Bactericidal activity of chlorine solution is enhanced by weak acidification. We compared the effects of various acids on the bactericidal activity of hypochlorite solution to establish a method for safe and effective use of an acidic hypochlorite solution. METHODS AND RESULTS: The bactericidal activities of acidic hypochlorite solutions that had been adjusted to pH 5.0 with hydrochloric acid, acetic acid, citric acid, lactic acid, formic acid, phosphoric acid or sulphuric acid against Bacillus subtilis spores were compared. The acidic solutions prepared with hydrochloric acid and acetic acid showed the highest bactericidal activity, and all of the spores (5 x 106 cfu ml(-1)) were killed within 10 min. On the other hand, the solutions prepared with citric acid and lactic acid showed no bactericidal activity against any bacterial strains tested in this study despite the low pH. The amount of chlorine gas produced by the preparation using acetic acid was sixfold less than that produced from the preparation using hydrochloric acid. CONCLUSIONS: Acetic acid is the most suitable and safe acid for the preparation of an acidic hypochlorite solution. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study provide useful information for establishing a method for safe and effective use of an acidic hypochlorite solution.  相似文献   

12.
Growth of two pathogenic and one environmental serotype of Yersinia enterocolitica under acidic conditions and at 4 and 25°C was investigated. At both temperatures the maximum growth inhibitory pH depended on the acidulant used and was in the order acetic > lactic > citric > sulphuric. At the lower temperature the maximum growth inhibitory pH was 0.3-0.5 pH units higher than at 25°C. No difference was observed between the behaviour of pathogenic and environmental serotypes in this respect. Measurement of growth at a number of sub-optimal temperatures and pH values showed that the variation of growth rate with temperature could be represented by a square root plot. The effect of different pH values could be incorporated into the model by replacing the regression coefficient b by its relationship with pH. Values of maximum growth inhibitory pH derived from the model were in good agreement with experimental values with the exception of acetic acid.  相似文献   

13.
Three close-fitting lid fermenters were incubated at 27 ± 2°C for 120 h. 'A' served as a control and contained 100 ml raw goats' milk; 'B' contained 50 ml 48-h-old nono as starter culture plus 50 ml pasteurized milk; and 'C' contained 100 ml pasteurized milk only. The pH and lactic acid contents were determined at intervals. Fermenter 'B' gave the best results in that the milk reached the lowest pH values and the highest lactic acid contents, and this resulted in a more appetizing and bitter product.  相似文献   

14.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

15.
1. The effects in the cow of intraruminal infusions of acetic acid, propionic acid or butyric acid on the secretion of the component fatty acids of the milk fat, and of these acids and of lactic acid on the composition of the blood plasma of the jugular vein, have been studied. 2. The infusion of acetic acid or butyric acid increased the yield of the C4–C16 acids of milk fat but decreased the yield of C18 acids. The infusion of propionic acid decreased the yields of all major component acids except palmitic acid and possibly lauric acid. 3. The changes in the concentrations in blood plasma of glucose and of ketone bodies were consistent with the glucogenic effect of propionic acid and the ketogenic effects of butyric acid and acetic acid. The effects of lactic acid were not consistent from cow to cow. Only with the infusion of acetic acid was a significant increase in the concentration of total volatile fatty acids in blood plasma found. Infusions of butyric acid and of propionic acid tended to depress the concentration of citric acid in the blood plasma and infusion of acetic acid increased it. No consistent effects of the infused acids on the concentration in blood plasma of esterified cholesterol, free cholesterol, triglyceride or phospholipid were observed. 4. The possibility is discussed that the effects of the infused acids on milk-fat secretion are caused through an alteration of the concentrations of precursors of milk fat in mammary arterial blood.  相似文献   

16.
Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.  相似文献   

17.
Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.  相似文献   

18.
In meat juice medium, aerobic spoilage bacteria utilized the following substrates in the order shown: Pseudomonos , glucose, amino acids, lactic acid; Acinetobacter , amino acids, lactic acid: Enterobacter , glucose, glucose-6-phosphate, amino acids; Microbacterium thermosphactum , glucose, glutamate. All the bacteria grew at their maximum rate utilizing the first and second substrates, but the growth rates declined when these were exhausted. The growth rate of Acinetobacter was reduced at pH 5·7 and below. All other species grew at their maximum rate within the pH range 5·5–7·0. On meat pseudomonads grew faster than the other species at all temperatures between 2° and 15°C. Interactions between any two species were observed only when one organism had attained its maximum cell density. Substrate exhaustion at the meat surface did not limit bacterial growth and it is suggested that the maximum cell density of aerobic spoilage cultures is determined by oxygen limitation of growth.  相似文献   

19.
The effect of various acidulants on the growth of Listeria monocytogenes   总被引:4,自引:3,他引:1  
The ability of four Listeria monocytogenes strains to initiate growth in brain heart infusion broth adjusted to various pH values with either acetic, lactic, citric or hydrochloric acid was investigated. Acetic acid was the most effective inhibitor tested, since in broth adjusted with this acid a higher minimum pH was required for growth of the various strains at both 4 and 30°C, as compared with broth adjusted with the other acidulants. The minimum pH value required for the initiation of growth of L. monocytogenes ranged from 5·0 to 5·7 at 4°C, and from 4·3 to 5·2 at 30°C, depending upon the acidulant used.  相似文献   

20.
The efficacy of different organic acids in decreasing the heat resistance of Paenibacillus polymyxa spores was assessed. The relationship between concentration of the undissociated form of different organic acids and decrease in heat resistance was also investigated. The heat resistance of P. polymyxa spores was tested in distilled water at 85, 90 and 95 degrees C, at pH4 and in the presence of 50, 100 and 200 mmol l(-1) of the undissociated form of lactic, citric or acetic acid and sodium citrate or acetate. The undissociated form of organic acids was responsible for increasing the heat sensitivity of spores. The most effective acid was lactic acid. The D values of the spores decreased rapidly (between 74 and 43%) in the presence of 50 mmol l(-1) of the undissociated form of organic acid, and increasing concentrations of these forms affected the heat resistance of spores less than proportionally. The heat resistance of the spores in milk was approximately threefold lower than in distilled water. This work has shown that the undissociated fraction of organic acids increases, albeit non-linearly, the sensitivity of spores to heat, even in complex substrates such as milk. By knowing the amount of organic acids added to a given substrate, their dissociation constants and the final pH, it could be possible to estimate the concentration of undissociated forms and the corresponding increase in lethality of heat treatments. This would help the food industry to maximize the lethality achieved by heat processes and/or safely reduce the heat treatments already in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号