首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda(5)]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda(5)]microcystin-LR and [d-Asp(3),ADMAdda(5)]microcystin-LR and a partial structure of three new [ADMAdda(5)]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis.  相似文献   

2.
The structural gene for a putative PPP family protein-serine/threonine phosphatase from the microcystin-producing cyanobacterium Microcystis aeruginosa PCC 7820, pp1-cyano1, was cloned. The sequence of the predicted gene product, PP1-cyano1, was 98% identical to that of the predicted product of an open reading frame, pp1-cyano2, from a cyanobacterium that does not produce microcystins, M. aeruginosa UTEX 2063. By contrast, PP1-cyano1 displayed less than 20% identity with other PPP family protein phosphatases from eukaryotic, archaeal, or other bacterial organisms. PP1-cyano1 and PP1-cyano2 were expressed in Escherichia coli and purified to homogeneity. Both enzymes exhibited divalent metal dependent phosphohydrolase activity in vitro toward phosphoserine- and phosphotyrosine-containing proteins and 3-phosphohistidine- and phospholysine-containing amino acid homopolymers. This multifunctional potential also was apparent in samples of PP1-cyano1 and PP1-cyano2 isolated from M. aeruginosa. Catalytic activity was insensitive to okadaic acid or the cyanobacterially produced cyclic heptapeptide, microcystin-LR, both potent inhibitors of mammalian PP1 and PP2A. PP1-cyano1 and PP1-cyano2 displayed diadenosine tetraphosphatase activity in vitro. Diadenosine tetraphosphatases share conserved sequence features with PPP family protein phosphatases. The diadenosine tetraphosphatase activity of PP1-cyano1 and PP1-cyano2 confirms that these enzymes share a common catalytic mechanism.  相似文献   

3.
Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response   总被引:16,自引:0,他引:16  
Gehringer MM 《FEBS letters》2004,557(1-3):1-8
Microcystins, potent heptapeptide hepatotoxins produced by certain bloom-forming cyanobacteria, are strong protein phosphatase inhibitors. They covalently bind the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A), thereby influencing regulation of cellular protein phosphorylation. The paralytic shellfish poison, okadaic acid, is also a potent inhibitor of these PPs. Inhibition of PP1 and PP2A has a dualistic effect on cells exposed to okadaic acid or microcystin-LR, with both apoptosis and increased cellular proliferation being reported. This review summarises the existing data on the molecular effects of microcystin-LR inhibition of PP1 and PP2A both in vivo and in vitro, and where possible, compares this to the action of okadaic acid.  相似文献   

4.
The cyclic heptapeptide, microcystin-LR, inhibits protein phosphatases 1 (PP1) and 2A (PP2A) with Ki values below 0.1 nM. Protein phosphatase 2B is inhibited 1000-fold less potently, while six other phosphatases and eight protein kinases tested are unaffected. These results are strikingly similar to those obtained with the tumour promoter okadaic acid. We establish that okadaic acid prevents the binding of microcystin-LR to PP2A, and that protein inhibitors 1 and 2 prevent the binding of microcystin-LR to PP1. We discuss the possibility that inhibition of PP1 and PP2A accounts for the extreme toxicity of microcystin-LR, and indicate its potential value in the detection and analysis of protein kinases and phosphatases.  相似文献   

5.
We have used a combination of highly specific protein phosphatase inhibitors and purified mammalian protein phosphatases to show that at least two separate Ser/Thr protein phosphatase activities are required for pre-mRNA splicing, but not for spliceosome assembly. Okadaic acid, tautomycin, and microcystin-LR, which are potent and specific inhibitors of PP1 and PP2A, two of the four major types of Ser/Thr-specific phosphatase catalytic subunits, block both catalytic steps of the pre-mRNA splicing mechanism in HeLa nuclear extracts. Inhibition of PP2A inhibits the second step of splicing predominantly while inhibition of both PP1 and PP2A blocks both steps, indicating a differential contribution of PP1 and PP2A activities to the two separate catalytic steps of splicing. Splicing activity is restored to toxin-inhibited extracts by the addition of highly purified mammalian PP1 or PP2A. Protein phosphatase activity was not required for efficient assembly of splicing complexes containing each of the U1, U2, U4/U6 and U5 snRNPs. The data indicate that reversible protein phosphorylation may play an important role in regulating the pre-mRNA splicing mechanism.  相似文献   

6.
The level of protein phosphorylation is dependent on the relative activities of both protein kinases and protein phosphatases. By comparison with protein kinases, however, there have been considerably fewer studies on the functions of serine/threonine protein phosphatases. This is partly due to a lack of specific protein phosphatase inhibitors that can be used as probes. In the present study we characterize the inhibitory effects of microcystin-LR, a hepatotoxic cyclic peptide associated with most strains of the blue-green algae Microcystis aeruginosa found in the Northern hemisphere, that proves to be a potent inhibitor of type 1 (IC50 = 1.7 nM) and type 2A (IC50 = 0.04 nM) protein phosphatases. Microcystin-LR inhibited the activity of both type 1 and type 2A phosphatases greater than 10-fold more potently than okadaic acid under the same conditions. Type 2A protein phosphatases in dilute mammalian cell extracts were found to be completely inhibited by 0.5 nM microcystin-LR while type 1 protein phosphatases were only slightly affected at this concentration. Thus, microcystin-LR may prove to be a useful probe for the study and identification cellular processes which are mediated by protein phosphatases.  相似文献   

7.
Type-1 protein serine/threonine phosphatases (PP1) are uniquely inhibited by the mammalian proteins, inhibitor-1 (I-1), inhibitor-2 (I-2), and nuclear inhibitor of PP1 (NIPP-1). In addition, several natural compounds inhibit both PP1 and the type-2 phosphatase, PP2A. Deletion of C-terminal sequences that included the beta12-beta13 loop attenuated the inhibition of the resulting PP1alpha catalytic core by I-1, I-2, NIPP-1, and several toxins, including tautomycin, microcystin-LR, calyculin A, and okadaic acid. Substitution of C-terminal sequences from the PP2A catalytic subunit produced a chimeric enzyme, CRHM2, that was inhibited by toxins with dose-response characteristics of PP1 and not PP2A. However, CRHM2 was insensitive to the PP1-specific inhibitors, I-1, I-2, and NIPP-1. The anticancer compound, fostriecin, differed from other phosphatase inhibitors in that it inhibited wild-type PP1alpha, the PP1alpha catalytic core, and CRHM2 with identical IC(50). Binding of wild-type and mutant phosphatases to immobilized microcystin-LR, NIPP-1, and I-2 established that the beta12-beta13 loop was essential for the association of PP1 with toxins and the protein inhibitors. These studies point to the importance of the beta12-beta13 loop structure and conformation for the control of PP1 functions by toxins and endogenous proteins.  相似文献   

8.
Okadaic acid and microcystin-LR, both potent inhibitors of protein phosphatases (PP), blocked vesicle fusion in a cell-free system. The effect of okadaic acid was reversed by the purified catalytic subunit of PP2A, but not PP1. Inhibition was gradual, required Mg-ATP, and was reduced by protein kinase inhibitors, indicating that it was mediated via protein phosphorylation. A candidate protein kinase would be cdc2 kinase, which normally is active in mitotic extracts and has been shown to inhibit endocytic vesicle fusion (Tuomikoski, T., M.-A. Felix, M. Dorée, and J. Gruenberg. 1989. Nature (Lond.). 342:942-945). However, it would appear that cdc2 kinase is not responsible for inhibition by okadaic acid. When compared to cytosol prepared from mitotic cells, okadaic acid did not increase cdc2 kinase activity sufficiently to account for the inhibition. In addition, inhibition was maintained when cdc2 protein was depleted from cytosol.  相似文献   

9.
Protein phosphatases are involved in many cellular processes. One of the most abundant and best studied members of this class is protein phosphatase type-2A (PP2A). In this study, PP2A was purified from the mussel Mytilus chilensis. Using both SDS-PAGE and size exclusion gel filtration under denaturant conditions, it was confirmed that the PP2A fraction was essentially pure. The isolated enzyme is a heterodimer and the molecular estimated masses of the subunits are 62 and 28 kDa. The isolated PP2A fraction has a notably high p-NPP phosphatase activity, which is inhibited by NaCl. The hydrolytic p-NPP phosphatase activity is independent of the MgCl2 concentration. The time courses of the inhibition of the PP2A activity of p-NPP hydrolysis by increasing concentrations of three phycotoxins that are specific inhibitors of PP2A are shown. Inhibitions caused by Okadaic acid, dinophysistoxin-1 (DTX1, 35-methylokadiac acid) and Microcystine L-R are dose-dependent with inhibition constants (Ki) of 1.68, 0.40 and 0.27 nM respectively. Microcystine L-R, the most potent phycotoxin inhibitor of PP2A isolated from Mytilus chilensis with an IC50 = 0.25 ng/ml, showed the highest specific inhibition effect an the p-NPP hydrolisis. The calculated IC50 for DTX1 and OA was 0.75 ng/ml and 1.8 ng/ml respectively.  相似文献   

10.
Immunoassays are increasingly used to investigate the production, properties and fates of the cyanobacterial hepatotoxic microcystins in vitro and in vivo. Responses of an ELISA immunoassay to microcystins have been determined using the authentic toxin antigen, microcystin-LR, and conjugation products between the toxin and glutathione, cysteine-glycine and cysteine. The antibodies against microcystin-LR crossreacted with the toxin conjugation products with similar affinities (96-112%) to that of microcystin-LR, when assayed at a concentration of 1 microg l(-1). Toxicity assessment of the conjugates, in comparison to microcystin-LR, indicated a reduction according to mouse bioassay. In vitro protein phosphatase inhibition assay indicated that the conjugates possessed approximately 3-9-fold lower toxicity than microcystin-LR.  相似文献   

11.
Okadaic acid is a potent inhibitor of select serine/threonine protein phosphatases. The importance of the C28-C38 hydrophobic domain of okadaic acid for inhibition of PP1 and PP2A was investigated. The hydrophobic domain is required but not sufficient for potent inhibition, and it also contributes to differential inhibition between PP1 and PP2A.  相似文献   

12.
Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision repair in vitro was highly sensitive to three toxins (okadaic acid, microcystin-LR and tautomycin), which block PP1- and PP2A-type phosphatases. Repair was more sensitive to okadaic acid than to tautomycin, suggesting the involvement of a PP2A-type enzyme, and was insensitive to inhibitor-2, which exclusively inhibits PP1-type enzymes. In a repair synthesis assay the toxins gave 70% inhibition of activity. Full activity could be restored to toxin-inhibited extracts by addition of purified PP2A, but not PP1. The p34 subunit of replication protein A was hyperphosphorylated in cell extracts in the presence of phosphatase inhibitors, but we found no evidence that this affected repair. In a coupled incision/synthesis repair assay okadaic acid decreased the production of incision intermediates in the repair reaction. The formation of 25-30mer oligonucleotides by dual incision during repair was also inhibited by okadaic acid and inhibition could be reversed with PP2A. Thus Ser/Thr- specific protein phosphorylation plays an important role in the modulation of nucleotide excision repair in vitro.  相似文献   

13.
A novel serine/threonine protein phosphatase is identified, and the catalytic subunit, obtained from a detergent extraction of the pellet generated by a 100,000 x g centrifugation of a whole bovine brain homogenate, is purified and characterized. The protein phosphatase, designated as PP3, has a Mr of 36,000, does not require divalent cations for activity, is stimulated rather than inhibited by inhibitor 2, is inhibited by both okadaic acid and microcystin-LR with an intermediate IC50 compared to type 1 and type 2A protein phosphatases, and preferentially dephosphorylates the beta subunit of phosphorylase kinase. Substrate specificity, immunoblotting with type-specific antisera, and the amino acid sequences of peptides derived from PP3 indicate that PP3 is not an isoform of any known serine/threonine protein phosphatase.  相似文献   

14.
With oligonucleotides modelled after conserved regions within the protein-serine/threonine phosphatases (PPs) of the PP1/2A/2B superfamily, the gene for the archaeal protein phosphatase PP1-arch2 was identified, cloned, and sequenced from the methanogenic archaeon Methanosarcina thermophila TM-1. The DNA-derived amino acid sequence of PP1-arch2 exhibited a high degree of sequence identity, 27 to 31%, with members of the PP1/2A/2B superfamily such as PP1-arch1 from Sulfolobus solfataricus, PP1alpha from rats, PP2A from Saccharomyces cerevisiae, and PP2B from humans. The activity of the recombinant PP1-arch2 was sensitive to several naturally occurring microbial toxins known to potently inhibit eucaryal PP1 and PP2A, including microcystin-LR, okadaic acid, tautomycin, and calyculin A.  相似文献   

15.
The cyclic peptide hepatotoxins microcystin-LR, 7-desmethyl-microcystin-RR and nodularin are potent inhibitors of the protein phosphatases type 1 and type 2A. Their potency of inhibition resembles calyculin-A and to a lesser extent okadaic acid. These hepatotoxins increase the overall level of protein phosphorylation in hepatocytes. Evidence is presented to indicate that in hepatocytes the morphological changes and effects on the cytoskeleton are due to phosphatase inhibition. The potency of these compounds in inducing hepatocyte deformation is similar to their potency in inhibiting phosphatase activity. These results suggest that the hepatotoxicity of these peptides is related to inhibition of phosphatases, and further indicate the importance of the protein phosphorylation in maintenance of structural and homeostatic integrity in these cells.  相似文献   

16.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

17.
The synthesis and biological activity of a series of 2-[(4-methylthiopyridin-2-yl)methylsulfinyl]benzimidazoles are described. These compounds have potent inhibitory effects against the protein tyrosine phosphatase activity of CD45. Enzymatic analysis with several phosphatases revealed that compound 5a had high specificity for CD45 compared with serine/threonine phosphatases (PP1, PP2A), tyrosine phosphatases (LAR, PTP1B and PTP-S2) and dual phosphatase (VHR).  相似文献   

18.
Microcystins (MCs) are a group of closely related cyclic heptapeptides produced by a variety of common cyanobacteria. These are potent and highly specific hepatotoxins, the toxicity of which is based upon their inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases. Apart from protein phosphatases, it is not known whether these phosphatase-inhibiting peptides could bind any other cellular proteins. We wanted to determine whether any possible unknown MC-adducts could explain the apoptotic effects observed at high concentrations of MCs. The question of other possible cellular proteins binding to MCs is also relevant when these compounds are employed for affinity purification of protein phosphatases. In MC-treated cell lysates, antibodies to MC recognized three protein adducts of 35-37 and 55 kD. By immunochemical and proteomics approaches, these proteins were identified as the catalytic subunits of type-1 and type-2A protein phosphatases and the ATP-synthase beta-subunit. The latter target could be associated with the suggested apoptosis-inducing potential of MCs.  相似文献   

19.
In lower eukaryotic organisms, the loss of serine/threonine protein phosphatase type 1 (PP1) results in growth arrest after the onset of mitosis. In humans, four highly homologous isoforms of PP1 (PP1alpha, PP1delta, PP1gamma1, and PP1gamma2) have been identified. Determining the roles of these phosphatases, however, has proven difficult due to the lack of subtype-specific inhibitors. In this study, we developed chimeric antisense 2'-O-(2-methoxy)ethylphosphothioate oligonucleotides targeting human PP1gamma1 that specifically inhibit PP1gamma1 gene expression. Two potent antisense oligonucleotides (ISIS 14435 and 14439; IC(50) approximately 50 nM) were then employed to elucidate the cellular functions of PP1gamma1 during cell cycle progression. In A549 cells, the inhibition of PP1gamma1 expression resulted in a dose-dependent inhibition of cellular proliferation, with growth arrest occurring after approximately 36-48 h, when PP1gamma1 mRNA expression was inhibited by >85%. Fluorescence-activated cell sorter analysis revealed that ISIS 14435/14439-induced growth arrest was associated with an increase in the number of cells containing 4N DNA. Immunostaining of treated cells revealed that the inhibition of PP1gamma1 expression had no apparent effect on the formation of mitotic spindles. However, decreased expression was associated with the failure of cell division in a late stage of cytokinesis and the formation of dikaryons.  相似文献   

20.
Acute lethal cytotoxicity of microcystin-LR (MC-LR), a toxin produced by fresh-water cyanobacteria, has been attributed to protein phosphatases type 1 and type 2A (PP1/PP2A) inhibition and reactive oxygen species (ROS) generation. However, the effects and molecular mechanisms of prolonged, sublethal MC-LR exposure are less known. We studied mice intraperitonealy injected with saline or 25 μg MC-LR/kg for 28 days (every 2 days). MC-LR induced apoptosis in liver and not in kidneys or heart of treated animals. Liver also showed decreased α-tubulin levels (45.56% ± 7.65% of controls) and activation of p38-MAPK and CaMKII pathways (137.93% ± 11.64% and 419.35% ± 67.83% of the control group, respectively). PP1/PP2A activity decreased from 1.82 ± 0.23 (controls) to 0.91 ± 0.98 mU/mg (MC-LR-treated mice); however, no difference in total Ser/Thr phosphatase activity was found between both the groups. The results demonstrated that apoptosis and cytoskeleton disruption contributed to the hepatic cytotoxic effects of subchronic MC-LR administration. These effects occurred in association with sustained activation of signaling cascades and development of compensatory mechanisms to maintain total Ser/Thr phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号