首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonic acid can act as a second messenger regulating many cellular processes among which is nitric oxide (NO) formation. The aim of the present study was to investigate the molecular mechanisms involved in the arachidonic acid effect on platelet NO level. Thus NO, cGMP and superoxide anion level, the phosphorylation status of nitric oxide synthase, the protein kinase C (PKC), and NADPH oxidase activation were measured. Arachidonic acid dose-dependently reduced NO and cGMP level. The thromboxane A2 mimetic U46619 behaved in a similar way. The arachidonic acid or U46619 effect on NO concentration was abolished by the inhibitor of the thromboxane A2 receptor SQ29548 and partially reversed by the PKC inhibitor GF109203X or by the phospholipase C pathway inhibitor U73122. Moreover, it was shown that arachidonic acid activated PKC and decreased nitric oxide synthase (eNOS) activities. The phosphorylation of the inhibiting eNOSthr495 residue mediated by PKC was increased by arachidonic acid, while no changes at the activating ser1177 residue were shown. Finally, arachidonic acid induced NADPH oxidase activation and superoxide anion formation. These effects were greatly reduced by GF109203X, U73122, and apocynin. Likely arachidonic acid reducing NO bioavailability through all these mechanisms could potentiate its platelet aggregating power.  相似文献   

2.
神经颗粒素:一种脑特异性蛋白质   总被引:7,自引:0,他引:7  
Li HY  Li JF  Lu GW 《生理科学进展》2003,34(2):111-115
神经颗粒素(Neurogrann,Ng)是一种新发现的由78个氨基酸组成的脑特异性蛋白,主要分布于人类或动物的大脑皮层、海马和嗅球等脑区的神经突触后。作为Calpacitin蛋白家族中的一员,Ng是蛋白激酶C的天然作用底物及钙调蛋白(CaM)的储库。在生理状态下,Ng与CaM结合形成复合体,而在蛋白激酶C或氧化剂的作用下,Ng可被磷酸化、氧化及谷胱甘肽化等化学修饰,降低其与CaM的亲和力,从而参与对CaM及CaM-激活的蛋白酶,如CaM-依赖性NO合酶、CaM-依赖性蛋白激酶Ⅱ(CaMKⅡ)及CaM-依赖性腺苷酸环化酶的调节。同时,由于CaM-依赖性蛋白酶大多参与长时程增强(LTP)和长时程抑制(LTD)的诱导,并且Ng的基因表达和蛋白质合成与神经元的突触形成、分化同步,因此,Ng可能在学习、记忆、神经系统发育(可塑性)等生理性变化中具有重要作用。此外,一些研究表明,Ng还可能参与甲状腺机能减退、睡眠剥夺、衰老及脑低氧预适应等病理生理学变化所造成的神经系统功能的改变。  相似文献   

3.
Inducible nitric oxide synthase (iNOS) has been implicated as a mediator of cellular toxicity in a variety of neurodegenerative disorders. Nitric oxide, which is generated in high quantities following induction of iNOS, combines with other oxygen radicals to form highly reactive, death-inducing compounds. Given the frequency of neuronal death due to neurodegenerative diseases, cerebral trauma, and stroke, it is important to study the mechanisms of regulation of iNOS in the brain. We demonstrated previously that angiotensin II (Ang II) decreases the expression of iNOS produced by bacterial endotoxin or cytokines in cultured astroglia prepared from adult rat brain. Here, we have addressed the mechanisms by which Ang II negatively modulates iNOS. The inhibitory effects of Ang II on lipopolysaccharide-induced expression of iNOS mRNA and protein and nitrite accumulation were mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate. Down-regulation of PKC produced by long-term treatment of astroglia with phorbol 12-myristate 13-acetate abolished the inhibitory effect of Ang II on lipopolysaccharide-stimulated expression of iNOS mRNA and nitrite accumulation. Finally, the reduction of lipopolysaccharide-induced nitrite accumulation by Ang II was attenuated by the selective PKC inhibitor chelerythrine. Collectively, these data indicate a role for PKC in the inhibitory actions of Ang II on iNOS expression in cultured astroglia.  相似文献   

4.
Investigations on the role of intracellular Ca2+ ion concentration in the mechanism of development of COPD in smokers and non-smokers were carried out. The intracellular Ca2+ levels were found to be increased in human lymphocytes in patients with COPD as compared to non-smokers and smokers without COPD. The investigations reveal an association in altered intracellular Ca2+ regulation in lymphocytes and severity of COPD, by means of significant activation of Protein kinase C and inducible nitric oxide synthase (iNOS). The effect of a novel calcium channel blocker ethyl 4-(4′-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate (H-DHPM) as a potential candidate for the treatment of COPD was also investigated. H-DHPM treated cells showed a decrease in intracellular Ca2+ level as compared to the control cells. Molecular studies were carried out to evaluate the expression profile of NOS isoforms in human lymphocytes and it was shown that H-DHPM decreases the increased iNOS in COPD along with reestablishing the normal levels of endothelial nitric oxide synthase (eNOS). The results of H-DHPM were comparable with those of Amlodipine, a known calcium channel blocker. Calcium channel blocker H-DHPM proves to be a potential candidate for the treatment of COPD and further clinical studies are required to prove its role in the treatment of pulmonary hypertension (PH).  相似文献   

5.
Abstract: Activation of protein kinase C (PKC) and phosphorylation of its presynaptic substrate, the 43-kDa growth-associated protein GAP-43, may contribute to the maintenance of hippocampal long-term potentiation (LTP) by enhancing the probability of neurotransmitter release and/or modifying synaptic morphology. Induction of LTP in rat hippocampal slices by high-frequency stimulation of Schaffer collateral-CA1 synapses significantly increased the PKC-dependent phosphorylation of GAP-43, as assessed by quantitative immunoblotting with a monoclonal antibody that recognizes an epitope that is specifically phosphorylated by PKC. The stimulatory effect of high-frequency stimulation on levels of immunoreactive phosphorylated GAP-43 was not observed when 4-amino-5-phosphonovalerate (50 µM), an N-methyl-d -aspartate (NMDA) receptor antagonist, was bath-applied during the high-frequency stimulus. This observation supports the hypothesis that a retrograde messenger is produced postsynaptically following NMDA receptor activation and diffuses to the presynaptic terminal to activate PKC. Two retrograde messenger candidates—arachidonic acid and nitric oxide (sodium nitroprusside was used to generate nitric oxide)—were examined for their effects in hippocampal slices on PKC redistribution from cytosol to membrane as an indirect measure of enzyme activation and PKC-specific GAP-43 phosphorylation. Bath application of arachidonic acid, but not sodium nitroprusside, at concentrations that produce synaptic potentiation (100 µM and 1 mM, respectively) significantly increased translocation of PKC immunoreactivity from cytosol to membrane as well as levels of immunoreactive, phosphorylated GAP-43. The stimulatory effect of arachidonic acid on GAP-43 phosphorylation was also observed in hippocampal synaptosomes. These results indicate that arachidonic acid may contribute to LTP maintenance by activation of presynaptic PKC and phosphorylation of GAP-43 substrate. The data also suggest that nitric oxide does not activate this signal transduction system and, by inference, activates a distinct biochemical pathway.  相似文献   

6.
Abstract: The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated. Incubation of rat cerebellar slices with the specific metabotropic glutamate receptor agonist, (±)-1-aminocyclopentane- trans -1,3-dicarboxylate ( trans -ACPD) increased cyclic GMP concentration two-fold. The increase was dose-dependently blocked by the protein kinase inhibitors staurosporine and calphostin C. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, increased cyclic GMP concentration without glutamate receptor activation. The cyclic GMP increases induced by PMA and trans -ACPD were independent of extracellular calcium blocked by N ω-nitro- l -arginine, a specific NOS inhibitor, and were not additive. Measurement of citrulline formation in cerebellar slices confirmed that NOS was activated by trans -ACPD and the activation was blocked by calphostin C. These results suggest that metabotropic glutamate receptor activates NOS through PKC. The calcium dependency of NOS activation was assessed in slices incubated with PMA and okadaic acid. NOS in both PMA-treated and untreated slices had similar activities at 100 n M free calcium, whereas at 25–70 n M free calcium, NOS in PMA-treated slices was more active than that in untreated slices. These results suggest that PKC regulates NO release in resting neurons by modulating the sensitivity of NOS at low calcium concentrations.  相似文献   

7.
The multifunctional calmodulin-dependent protein kinase (calmodulin-kinase) from rat brain was autophosphorylated in a Ca2+- and calmodulin-dependent manner. The activity of the autophosphorylated enzyme was independent of Ca2+ and calmodulin. Calmodulin-kinase was dephosphorylated by protein phosphatase C from bovine brain, which is the catalytic subunits of protein phosphatases 1 and 2A. The holoenzyme of protein phosphatase 2A was also involved in the dephosphorylation of the enzyme. The autophosphorylated sites of calmodulin-kinase were universally dephosphorylated by protein phosphatase C. Calmodulin-kinase was inactivated and reactivated by autophosphorylation and dephosphorylation, respectively. Furthermore, the regulation of calmodulin-kinase by autophosphorylation and dephosphorylation was observed using calmodulin-kinase from canine heart. These results suggest that the activity of calmodulin-kinase is regulated by autophosphorylation and dephosphorylation, and that the regulation is the universal phenomenon for many other calmodulin-kinases in various tissues.  相似文献   

8.
This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca2+-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-κB (NF-κB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca2+-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca2+-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC- and -β activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-κB-specific DNA–protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-κB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-κB activation. These data suggest that persistent inhibition of ER Ca2+-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-κB activation that induces iNOS expression and NO production.  相似文献   

9.
Bradykinin (BK) acutely increases endothelial nitric oxide (NO) production by activating endothelial NO synthase (eNOS), and this increase is in part correlated with enhanced phosphorylation/dephosphorylation of eNOS by several protein kinases and phosphatases. However, the signaling mechanisms producing this increase are still controversial. In an attempt to delineate the acute effect of BK on endothelial NO production, confluent bovine aortic endothelial cells were incubated with BK, and NO production was measured by NO-specific chemiluminescence. Significant increase in NO levels was detected as early as 1 min after BK treatment, with concomitant increase in the phosphorylation of Ser(1179) (bovine sequence) site of eNOS (eNOS-Ser(1179)). This acute effect of BK on both increases was blocked only by treatment of protein kinase A inhibitor H-89, but not by the inhibitors of calmodulin-dependent kinase II and protein kinase B, suggesting that the rapid increase in NO production by BK is mediated by the PKA-dependent phosphorylation of eNOS-Ser(1179).  相似文献   

10.
Abstract: Metabotropic glutamate receptors, nitric oxide (NO), and the signal transduction pathways of protein kinase C (PKC) and protein kinase A (PKA) can independently alter ischemic-induced neuronal cell death. We therefore examined whether the protective effects of metabotropic glutamate receptors during anoxia and NO toxicity were mediated through the cellular pathways of PKC or PKA in primary hippocampal neurons. Pretreatment with the metabotropic glutamate receptor agonists (±)-1-aminocyclopentane- trans -1,3-dicarboxylic acid, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD), and l (+)-2-amino-4-phosphonobutyric acid ( l -AP4) 1 h before anoxia or NO exposure increased hippocampal neuronal cell survival from ∼30 to 70%. In addition, posttreatment with 1 S ,3 R -ACPD or l -AP4 up to 6 h following an insult attenuated anoxic- or NO-induced neurodegeneration. In contrast, treatment with l -(+)-2-amino-3-phosphonopropionic acid, an antagonist of the metabotropic glutamate receptor, did not significantly alter neuronal survival during anoxia or NO exposure. Protection by the ACPD-sensitive metabotropic receptors, such as the subtypes mGluR1α, mGluR2, and mGluR5, appears to be dependent on the modulation of PKC activity. In contrast, l -AP4-sensitive metabotropic glutamate receptors, such as the subtype mGluR4, may increase neuronal survival through PKA rather than PKC. Thus, activation of specific metabotropic glutamate receptors is protective during anoxia and NO toxicity, but the signal transduction pathways mediating protection differ among the metabotropic glutamate receptor subtypes.  相似文献   

11.
12.
Many types of serine/threonine protein phosphatase have been cloned and characterized in plants, such as Type-1 serine/threonine protein phosphatase (PP1), Type-2A serine/threonine protein phosphatase (PP2A), Type-2C serine/threonine protein phosphatase (PP2C). However no Type-2B serine/threonine protein phosphatase (PP2B, calcineurin), or calcineurin A subunit-like protein (CaNAL), has been identified. We detected protein phosphatase activity in mixtures of CaM-binding proteins from three plants (Nicotiana tabacum, Brassica oleracea and Arabidopsis thaliana). Two-dimensional electrophoresis (2-D) and Western blot analysis with an anti-rat CNA antibody revealed a small protein of 60 kDa that we believe is a CaNAL. The isoelectric point (pI) of this protein in N. tabacum was approximately 5.69. The protein phosphatase activity in the mixture of CaM-binding proteins from N. tabacum was regulated by Ca2+ and Calmodulin (CaM) with either RII peptides or pNPP as substrate. The immunosuppressive drugs, CsA and FK506, also inhibited the protein phosphatase activity significantly.  相似文献   

13.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

14.
15.
观察慢性缺氧对大鼠肺动脉诱导型一氧化氮合酶 (i NOS)和蛋白激酶 C (PKC)表达的影响 ,并探讨 i NOS及 PKC的相互关系在肺动脉高压形成中的作用。建立常压缺氧肺动脉高压模型。应用免疫组化染色和计算机定量图像分析技术观察各组 i NOS和 PKC在蛋白质水平表达的变化 ,并分析二者之间的关系。结果表明随着缺氧时间的延长 ,PKC的表达逐渐上升而 i NOS的表达逐渐下降 ,直线相关分析结果呈显著性负相关 (n=2 4,r=- 0 .94,P<0 .0 1) ,提示 i NOS与 PKC相互拮抗作用与缺氧性肺动脉高压的形成及发展有关  相似文献   

16.
Mitogen-activated protein (MAP) kinases are universal transducers of extracellular signals in all eukaryotes. Multiple MAPK pathways exist in each organism that are differentially activated by a variety of stimuli including chemical as well as physical factors. We have characterized the stress-activated MAP kinase (SAMK) pathway in plants that is involved in mediating touch, drought, cold, and wounding. The SAMK pathway is activated by a posttranslational mechanism, but inactivation requires de novo expression of gene(s). One of these genes isMP2C encoding a protein phosphatase type 2C that is able to inactivate the SAMK pathway.MP2C expression itself is regulated by the SAMK pathway and constitutes a negative feedback mechanism for resetting the pathway. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

17.
18.
Abstract: PEA-15 (phosphoprotein enriched in astrocytes, Mr = 15,000) is an acidic serine-phosphorylated protein highly expressed in the CNS, where it can play a protective role against cytokine-induced apoptosis. PEA-15 is a major substrate for protein kinase C. Endothelins, which are known to exert pleiotropic effects on astrocytes, were used to analyze further the processes involved in PEA-15 phosphorylation. Endothelin-1 or endothelin-3 (0.1 µ M ) induced a robust phosphorylation of PEA-15 that was abolished by the removal of extracellular calcium, but only diminished by inhibitors of protein kinase C. Microsequencing of phosphopeptides generated by digestion of PEA-15 following endothelin-1 treatment identified two phosphorylated residues: Ser104, previously recognized as the protein kinase C site, and a novel phosphoserine, Ser116, located in a consensus motif for either protein kinase casein kinase II or calcium/calmodulin-dependent protein kinase II (CaMKII). Partly purified PEA-15 was a substrate in vitro for CaMKII, but not for casein kinase II. Two-dimensional phosphopeptide mapping demonstrated that the site phosphorylated in vitro by CaMKII was also phosphorylated in intact astrocytes in response to endothelin. CaMKII phosphorylated selectively Ser116 and had no effect on Ser104, but in vitro phosphorylation by CaMKII appeared to facilitate further phosphorylation by protein kinase C. Treatment of intact astrocytes with okadaic acid enhanced the phosphorylation of the CaMKII site. These results demonstrate that PEA-15 is phosphorylated in astrocytes by CaMKII (or a related kinase) and by protein kinase C in response to endothelin.  相似文献   

19.
20.
Ay I  Tuncer M 《Life sciences》2006,79(9):877-882
We investigated the nature and signaling pathways of endothelium- and sensory-nerve ending-derived substances involved in acetylcholine-induced vasodilation in rat isolated perfused kidney. Endothelial denudation by Triton X-100 (0.2%, 0.1 ml) or depletion of afferent nerve endings by capsaicin (10(-6) mol/l) attenuated acetylcholine-induced vasodilation. When these two agents were administered together, the response to acetylcholine was completely inhibited. CGRP1 receptor blocker CGRP 8-37 (10(-7) mol/l) and adenosine A(2) receptor antagonist ZM 241 385 (10(-7) mol/l) inhibited acetylcholine-induced dilation. When indomethacin (10(-5) mol/l), a cyclooxygenase inhibitor, l-NOARG (10(-4) mol/l), a nitric oxide (NO) synthase inhibitor, and potassium chloride (30 mmol/l), to test EDHF response, were perfused simultaneously, the inhibition was greater than that was observed with each agent alone. Guanylate cyclase inhibitor ODQ (10(-5) mol/l) or protein kinase A inhibitor KT 5720 (5x10(-7) mol/l) inhibited acetylcholine-induced dilation. Gap junction uncoupler 18alpha-glycyrrhetinic acid (10(-4) mol/l) caused an uncontrollable increase in basal perfusion pressure making it impossible to test against acetylcholine-induced dilation. Our data suggest that NO, prostanoids, EDHF, and CGRP released from vascular endothelium and afferent nerve endings participate in acetylcholine-induced vasodilation and their signal transduction molecules include protein kinase A and guanylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号