首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order to isolate genes that may not be represented in current human brain cDNA libraries, we have sequenced about 20,000 sequence tags of cDNA clones derived from cerebellum and parietal lobe of cynomolgus monkeys (Macaca fascicularis). We determined the entire cDNA sequence of approximately 700 clones whose 5'-terminal sequences showed no homology to annotated putative genes or expressed sequence tags in current databases of genetic information. From this, 118 clones with sequences encoding novel open reading frames of more than 100 amino acid residues were selected for further analysis. To localize the genes corresponding to these 118 newly identified cDNA clones on human chromosomes, we performed a homology search using the human genome sequence and fluorescent in situ hybridization. In total, 108 of 118 clones were successfully assigned to specific regions of human chromosomes. This result demonstrates that genes expressed in cynomolgus monkey are highly conserved throughout primate evolution, and that virtually all had human homologs. Furthermore, we will be able to discover novel human genes in the human genome using monkey homologs as probes.  相似文献   

3.
We have isolated two metallothionein (MT) cDNA clones copied from the RNA of cadmium-resistant monkey kidney cells. The complete DNA sequences of these clones show that they encode two distinct MTs. One clone appears to represent monkey MT-II, as shown by its close homology to the human MT-II sequence, whereas the second may correspond to monkey MT-I or a related variant metallothionein. Conserved sequences were identified in both the 5′ and 3′ untranslated regions of these clones.  相似文献   

4.
We have identified novel G protein-coupled receptors (GPCRs) with no introns in the coding region from the human genome sequence: 322 olfactory receptors; 22 taste receptors; 128 registered GPCRs for endogenous ligands; 50 novel GPCR candidates homologous to registered GPCRs for endogenous ligands; and 59 novel GPCR candidates not homologous to registered GPCRs. The total number of GPCRs with and without introns in the human genome was estimated to be approximately 950, of which 500 are odorant or taste receptors and 450 are receptors for endogenous ligands.  相似文献   

5.
A novel mitochondrial DNA-like sequence in the human nuclear genome.   总被引:3,自引:0,他引:3  
We describe here a nuclear mitochondrial DNA-like sequence (numtDNA) that is nearly identical in sequence to a continuous 5842 bp segment of human mitochondrial DNA (mtDNA) that spans nucleotide positions 3914 to 9755. On the basis of evolutionary divergence among modern primates, this numtDNA molecule appears to represent mtDNA from a hominid ancestor that has been translocated to the nuclear genome during the recent evolution of humans. This numtDNA sequence harbors synonymous and nonsynonymous nucleotide substitutions relative to the authentic human mtDNA sequence, including an array of substitutions that was previously found in the cytochrome c oxidase subunit 1 and 2 genes. These substitutions were previously reported to occur in human mtDNA, but subsequently contended to be present in a nuclear pseudogene sequence. We now demonstrate their exclusive association with this 5842-bp numtDNA, which we have characterized in its entirety. This numtDNA does not appear to be expressed as a mtDNA-encoded mRNA. It is present in nuclear DNA from human blood donors, in human SH-SY5Y and A431 cell lines, and in rho(0) SH-SY5Y and rho(0) A431 cell lines that were depleted of mtDNA. The existence of human numtDNA sequences with great similarities to human mtDNA renders the amplification of pure mtDNA from cellular DNA very difficult, thereby creating the potential for confounding studies of mitochondrial diseases and population genetics.  相似文献   

6.
Induced pluripotent stem (iPS) cells established by introduction of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4 and c-MYC have competence similar to embryonic stem (ES) cells. iPS cells generated from cynomolgus monkey somatic cells by using genes taken from the same species would be a particularly important resource, since various biomedical investigations, including studies on the safety and efficacy of drugs, medical technology development, and research resource development, have been performed using cynomolgus monkeys. In addition, the use of xenogeneic genes would cause complicating matters such as immune responses when they are expressed. In this study, therefore, we established iPS cells by infecting cells from the fetal liver and newborn skin with amphotropic retroviral vectors containing cDNAs for the cynomolgus monkey genes of POU5F1, SOX2, KLF4 and c-MYC. Flat colonies consisting of cells with large nuclei, similar to those in other primate ES cell lines, appeared and were stably maintained. These cell lines had normal chromosome numbers, expressed pluripotency markers and formed teratomas. We thus generated cynomolgus monkey iPS cell lines without the introduction of ecotropic retroviral receptors or other additional transgenes by using the four allogeneic transgenes. This may enable detailed analysis of the mechanisms underlying the reprogramming. In conclusion, we showed that iPS cells could be derived from cynomolgus monkey somatic cells. To the best of our knowledge, this is the first report on iPS cell lines established from cynomolgus monkey somatic cells by using genes from the same species.  相似文献   

7.
Ten cDNAs for drought-inducible genes were isolated using differential screening of a cDNA library prepared from 10-hr dehydrated cowpea plants,Vigna unguiculata (S. Iuchi, K. Yamaguchi-Shinozaki, T. Urao, T. Terao, K. Shinozaki; Plant Cell Physiology, 1996 in press). Two of the cDNA clones, designated CPRD12 and CPRD46, were sequenced and characterized. The CPRD12 and CPRD46 cDNAs encode putative proteins related to nonmetallo-short-chain alcohol dehydrogenase (CPRD12) and chloroplastic lipoxygenase (CPRD46). Northern blot analysis revealed that these genes are induced by high-salinity stress and exogenous abscisic acid, but not by cold stress. The CPRD46 gene is also responsive to heat stress and methyl jasmonate and salicylic acid. Genomic Southern blot analysis suggested that CPRD12 constitutes a small gene family, but that CPRD46 is a single copy gene. We discuss the possible functions of these two CPRD gene products under drought stress.  相似文献   

8.
Comparison of the protein coding region of mRNA for the prostatic secretory protein PSP94 in human (hPSP94) with that in rhesus monkey (rmPSP94) indicates that, for the most part, its sequence has evolved with few constraints and at a relatively fast rate. Interestingly, half of the 22 residue differences between the two species involve charge changes, reflected by the acidic pI (5.4) of hPSP94 and the basic pI (10.6) of rmPSP94. However, the 10 cysteines and 5 of the 6 prolines of PSP94 were unaffected, suggesting that the three-dimensional conformations of the human and the monkey proteins may be similar. Rapid evolution of this gene might explain the apparent absence in nonprimates of homologous sequences detectable by hybridization.  相似文献   

9.
Yu P  Ma D  Xu M 《Genomics》2005,86(4):414-422
Here we studied one special type of gene, i.e., the nested gene, in the human genome. We collected 373 reliably annotated nested genes. Two-thirds of them were on the strand opposite that of their host gene. About 58% coding nested gene pairs were conserved in mouse and some were even maintained in chicken and fish, while nested pseudogenes were poorly conserved. Ka/Ks analysis revealed that nested genes were under strong selection, although they did not demonstrate greater conservation than other genes. With microarray data we observed that two partners of one nested pair seemed to be expressed reciprocally. A significant proportion of nested genes were tissue-specifically expressed. Gene ontology analysis demonstrated that quite a number of nested genes participated in cellular signal transduction. Based on these observations, we think that nested genes are a group of genes with important physiological functions.  相似文献   

10.
11.
Khabar KS  Bakheet T  Williams BR 《Genomics》2005,85(2):165-175
Transient response genes regulate critical biological responses that include cell proliferation, signal transduction events, and responses to exogenous agents such as inflammatory stimuli, microbes, and radiation. An important feature that ensures a timely response is the short half-life of the messenger RNA (mRNA), which is thought to be predominantly mediated by adenylate uridylate-rich sequence elements (AREs) in the 3' untranslated region (3' UTR). The repertoire and extent of transient response genes in the human genome are not known. We used a computational approach to delineate those genes that code for transient ARE mRNAs. We utilized a 3' UTR-specific ARE motif to retrieve and cluster 3'-end ESTs using a refined extraction protocol. With the availability of the entire human genome, we were able to utilize ARE EST clusters for further mining and computational prediction of ARE genes. The described approaches led to the finding of more than 1500 ARE genes in the human genome. In particular, "hidden" ARE mRNAs and alternative forms due to 3'UTR completeness, variant polyadenylation, and splicing were uncovered.  相似文献   

12.
13.
Comparative hybridization of cDNA arrays is a powerful tool for the measurement of differences in gene expression between two or more tissues. We optimized this technique and employed it to discover genes with potential for the diagnosis of ovarian cancer. This cancer is rarely identified in time for a good prognosis after diagnosis. An array of 21,500 unknown ovarian cDNAs was hybridized with labeled first-strand cDNA from 10 ovarian tumors and six normal tissues. One hundred and thirty-four clones are overexpressed in at least five of the 10 tumors. These cDNAs were sequenced and compared to public sequence databases. One of these, the gene HE4, was found to be expressed primarily in some ovarian cancers, and is thus a potential marker of ovarian carcinoma.  相似文献   

14.
15.
16.
17.
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; S?hl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.  相似文献   

18.
Gupta M 《Biometrics》2007,63(3):797-805
A generalized hierarchical Markov model for sequences that contain length-restricted features is introduced. This model is motivated by the recent development of high-density tiling array data for determining genomic elements of functional importance. Due to length constraints on certain features of interest, as well as variability in probe behavior, usual hidden Markov-type models are not always applicable. A robust Bayesian framework that can incorporate length constraints, probe variability, and bias is developed. Moreover, a novel recursion-based Monte Carlo algorithm is proposed to estimate the parameters and impute hidden states under length constraints. Application of this methodology to yeast chromosomal arrays demonstrate substantial improvement over currently existing methods in terms of sensitivity as well as biological interpretability.  相似文献   

19.
A report on the genomics workshop 'Identification of Functional Elements in Mammalian Genomes', Cold Spring Harbor, New York, 11-13 November 2004.  相似文献   

20.
Gilligan P  Brenner S  Venkatesh B 《Gene》2002,294(1-2):35-44
The compact genome of the pufferfish, Fugu rubripes, has been proposed as a 'reference' genome to aid in annotating and analysing the human genome. We have annotated and compared 85 kb of Fugu sequence containing 17 genes with its homologous loci in the human draft genome and identified three 'novel' human genes that were missed or incompletely predicted by the previous gene prediction methods. Two of the novel genes contain zinc finger domains and are designated ZNF366 and ZNF367. They map to human chromosomes 5q13.2 and 9q22.32, respectively. The third novel gene, designated C9orf21, maps to chromosome 9q22.32. This gene is unique to vertebrates, and the protein encoded by it does not contain any known domains. We could not find human homologs for two Fugu genes, a novel chemokine gene and a kinase gene. These genes are either specific to teleosts or lost in the human lineage. The Fugu-human comparison identified several conserved non-coding sequences in the promoter and intronic regions. These sequences, conserved during 450 million years of vertebrate evolution, are likely to be involved in gene regulation. The 85 kb Fugu locus is dispersed over four human loci, occupying about 1.5 Mb. Contiguity is conserved in the human genome between six out of 16 Fugu gene pairs. These contiguous chromosomal segments should share a common evolutionary history dating back to the common ancestor of mammals and teleosts. We propose contiguity as strong evidence to identify orthologous genes in distant organisms. This study confirms the utility of the Fugu as a supplementary tool to uncover and confirm novel genes and putative gene regulatory regions in the human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号