首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein engineering experiments have recently yielded hyperstable variants of the thermolysin-like protease from Bacillus stearothermophilus (TLP-ste). These variants contain mutations suggested by comparison of TLP-ste with its more thermostable counterpart thermolysin, as well as rationally designed mutations. The key to the successful stabilization strategy was the identification of a “weak” region that is involved in early unfolding events (“unfolding region”). Mutations in this region had large effects on stability, whereas mutations in other parts of the protein generally had minor effects. The mutational strategies that were used as well as characteristics of the engineered hyperstable biocatalysts are reviewed below.  相似文献   

2.
This paper describes attempts to increase the kinetic stability of chitinase B from Serratia marcescens (ChiB) by the introduction of semi-automatically designed rigidifying mutations of the Gly-->Ala and Xxx-->Pro type. Of 15 single mutants, several displayed significant increases in thermal stability, whereas most mutants showed minor effects. All mutations with non-marginal effects on stability clustered in a limited, surface-exposed region of the enzyme, indicating that this region is involved in a partial unfolding process that triggers irreversible thermal inactivation (aggregation). A double mutant containing two stabilizing mutations in this region (G188A, A234P) displayed a 10-fold increase in half-life at 57 degrees C and a 4.2 degrees C increase in apparent T(m). These results show that entropic stabilization works well for ChiB and they pinpoint a region whose unfolding may be crucial for the kinetic stability of this enzyme.  相似文献   

3.
Pyrrolidone carboxyl peptidases (PCPs) from hyperthermophiles have a structurally conserved and completely buried Glu192 in the hydrophobic core; in contrast, the corresponding residue in the mesophile protein is a hydrophobic residue, Ile. Does the buried ionizable residue contribute to stabilization or destabilization of hyperthermophile PCPs? To elucidate the role of the buried glutamic acid in stabilizing PCP from hyperthermophiles, we constructed five Glu192 mutants of PCP-0SH (C142S/C188S, Cys-free double mutant of PCP) from Pyrococcus furiosus and examined their thermal and pH-induced unfolding and crystal structures and compared them with those of PCP-0SH. The stabilities of apolar (E192A/I/V) and polar (E192D/Q) mutants were less than PCP-0SH at acidic pH values. In the alkaline region, the mutant proteins, except for E192D, were more stable than PCP-0SH. The thermal stability data and theoretical calculations indicated an apparent pKa value > or = 7.3 for Glu192. Present results confirmed that the protonated Glu192 in PCP-0SH forms strong hydrogen bonds with the carbonyl oxygen and peptide nitrogen of Pro168. New intermolecular hydrogen bonds in the E --> A/D mutants were formed by a water molecule introduced into the cavity created around position 192, whereas the hydrogen bonds disappeared in the E --> I/V mutants. Structure-based empirical stability of mutant proteins was in good agreement with the experimental results. The results indicated that (1) completely buried Glu192 contributes to the stabilization of PCP-0SH because of the formation of strong intramolecular hydrogen bonds and (2) the hydrogen bonds by the nonionized and buried Glu can contribute more than the burial of hydrophobic groups to the conformational stability of proteins.  相似文献   

4.
Glutamine 143 in human manganese superoxide dismutase (MnSOD) forms a hydrogen bond with the manganese-bound solvent molecule and is investigated by replacement using site-specific mutagenesis. Crystal structures showed that the replacement of Gln 143 with Ala made no significant change in the overall structure of the mutant enzyme. Two new water molecules in Q143A MnSOD were situated in positions nearly identical with the Oepsilon1 and Nepsilon2 of the replaced Gln 143 side chain and maintained a hydrogen-bonded network connecting the manganese-bound solvent molecule to other residues in the active site. However, their presence could not sustain the stability and activity of the enzyme; the main unfolding transition of Q143A was decreased 16 degrees C and its catalysis decreased 250-fold to k(cat)/K(m) = 3 x 10(6) M(-)(1) s(-)(1), as determined by stopped-flow spectrophotometry and pulse radiolysis. The mutant Q143A MnSOD and other mutants at position 143 showed very low levels of product inhibition and favored Mn(II)SOD in the resting state, whereas the wild type showed strong product inhibition and favored Mn(III)SOD. However, these differences did not affect the rate constant for dissociation of the product-inhibited complex in Q143A MnSOD which was determined from a characteristic absorbance at 420 nm and was comparable in magnitude ( approximately 100 s(-)(1)) to that of the wild-type enzyme. Hence, Gln 143, which is necessary for maximal activity in superoxide dismutation, appears to have no role in stabilization and dissociation of the product-inhibited complex.  相似文献   

5.
Bartish G  Moradi H  Nygård O 《The FEBS journal》2007,274(20):5285-5297
Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.  相似文献   

6.
The thermostable cellulase Cel12A from Rhodothermus marinus was produced at extremely low levels when expressed in Escherichia coli and was cytotoxic to the cells. In addition, severe aggregation occurred when moderately high concentrations of the enzyme were heat-treated at 65 degrees C, the growth optimum of R. marinus. Sequence analysis revealed that the catalytic module of this enzyme is preceded by a typical linker sequence and a highly hydrophobic putative signal peptide. Two deletion mutants lacking this hydrophobic region were cloned and successfully expressed in E. coli. These results indicated that the N-terminal putative signal peptide was responsible for the toxicity of the full-length enzyme in the host organism. This was further corroborated by cloning and expressing the hydrophobic N-terminal domain in E. coli, which resulted in extensive cell lysis. The deletion mutants, made up of either the catalytic module of Cel12A or the catalytic module and the putative linker sequence, were characterised and their properties compared to those of the full-length enzyme. The specific activity of the mutants was approximately three-fold higher than that of the full-length enzyme. Both mutant proteins were highly thermostable, with half-lives exceeding 2 h at 90 degrees C and unfolding temperatures up to 103 degrees C.  相似文献   

7.
The side chains of His30 and Tyr166 from adjacent subunits in the homotetramer human manganese superoxide dismutase (Mn-SOD) form a hydrogen bond across the dimer interface and participate in a hydrogen-bonded network that extends to the active site. Compared with wild-type Mn-SOD, the site-specific mutants H30N, Y166F, and the corresponding double mutant showed 10-fold decreases in steady-state constants for catalysis measured by pulse radiolysis. The observation of no additional effect upon the second mutation is an example of cooperatively interacting residues. A similar effect was observed in the thermal stability of these enzymes; the double mutant did not reduce the major unfolding transition to an extent greater than either single mutant. The crystal structures of these site-specific mutants each have unique conformational changes, but each has lost the hydrogen bond across the dimer interface, which results in a decrease in catalysis. These same mutations caused an enhancement of the dissociation of the product-inhibited complex. That is, His30 and Tyr166 in wild-type Mn-SOD act to prolong the lifetime of the inhibited complex. This would have a selective advantage in blocking a cellular overproduction of toxic H2O2.  相似文献   

8.
Glycosylation affects the circulatory half-lives of therapeutic proteins. However, the effects of an additional N-glycosylation in the unstructured region or the loop region of alpha-1 antitrypsin (A1AT) on the circulatory half-life of the protein are largely unknown. In this study, we investigated the role of an additional N-glycosylation site (Q4N/D6T, Q9N, D12N/S14T, A70N, G148T, R178N, or V212N) to the three naturally occurring N-glycosylation sites in human A1AT. A single-dose (445 μg/kg) pharmacokinetic study using male Sprague-Dawley rats showed that, among the seven recombinant A1AT (rA1AT) mutants, Q9N and D12N/S14T showed the highest serum concentration and area under the curve values, as well as similar circulatory half-lives that were 2.2-fold higher than plasma-derived A1AT and 1.7-fold higher than wild-type rA1AT. We further characterized the Q9N mutant regarding the N-glycan profile, sialic acid content, protease inhibitory activity, and protein stability. The results indicate that an additional N-glycosylation in the flexible N-terminal region increases the circulatory half-life of rA1AT without altering its protease inhibitory activity. Our study provides novel insight into the use of rA1AT for the treatment of emphysema with an increased injection interval relative to the clinically used plasma-derived A1AT.  相似文献   

9.
We report the thermal stability of wild type (WT) and 14 different variants of human copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system. We correlated the metal ion contents of SOD1 variants with the occurrence of distinct melting transitions. Altered thermal stability upon reduction of copper with dithionite identified transitions resulting from the unfolding of copper-containing SOD1 species. We demonstrated that copper or zinc binding to a subset of "WT-like" FALS mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133Delta) conferred a similar degree of incremental stabilization as did metal ion binding to WT SOD1. However, these mutants were all destabilized by approximately 1-6 degrees C compared with the corresponding WT SOD1 species. Most of the "metal binding region" FALS mutants (H46R, G85R, D124V, D125H, and S134N) exhibited transitions that probably resulted from unfolding of metal-free species at approximately 4-12 degrees C below the observed melting of the least stable WT species. We conclude that decreased conformational stability shared by all of these mutant SOD1s may contribute to SOD1 toxicity in FALS.  相似文献   

10.
We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein. Fluorescence spectra data revealed that the tertiary structure of the mutants is more compact than that of WT Mn2. According to the heat-induced denaturation experiments data, the melting temperature (Tm) for the unfolding of tertiary structure of the F190L variant increases by 3°C compared with that of the WT and E179S mutant. Interestingly, the conformational enthalpy of the F190L mutant (86 kcal mol−1) is considerably lower than those in the WT photoprotein (102 kcal mol−1) and E179S mutant (106 kcal mol−1). The significant difference in the enthalpy of the thermal unfolding process could be explained by considering that the thermally denatured state of the F190L mutant is structurally less expanded than the WT and E179S variants. Bioluminescence activity data showed that the maximum characteristic wavelengths of the mutants undergo blue shift as compared with the WT protein. Initial intensity of the F190L and E179S variants was recorded to be 137.5% and 55.9% of the WT protein, respectively.  相似文献   

11.
The human reduced folate carrier (hRFC) mediates the membrane transport of reduced folates and classical anti-folates into mammalian cells. RFC is characterized by 12 transmembrane domains (TMDs), internally oriented N and C termini, and a large central linker connecting TMDs 1-6 and 7-12. By co-expression and N-hydroxysuccinimide methotrexate (Mtx) radioaffinity labeling of hRFC TMD 1-6 and TMD 7-12 half-molecules, combined with endoproteinase GluC digestion, a substrate binding domain was previously localized to within TMDs 8-12 (Witt, T. L., Stapels, S. E., and Matherly, L. H. (2004) J. Biol. Chem. 279, 46755-46763). In this report, this region was further refined to TMDs 11-12 by digestion with 2-nitro-5-thiocyanatobenzoic acid. A transportcompetent cysteine-less hRFC was used as a template to prepare single cysteine-replacement mutant constructs in which each residue from Glu-394 to Asp-420 of TMD 11 and Tyr-435 to His-457 of TMD 12 was replaced individually by a cysteine. The mutant constructs were transfected into hRFC-null HeLa cells. Most of the 50 single cysteine-substituted constructs were expressed at high levels on Western blots. With the exception of G401C hRFC, all mutants were active for Mtx transport. Treatment with sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) had no effect on hRFC activity for all of the cysteine mutants within TMD 12 and for the majority of the cysteine mutants within TMD 11. However, MTSES inhibited Mtx uptake by the T404C, A407C, T408C, T412C, F416C, I417C, V418C, and S419C mutants by 25-65%. Losses of activity by MTSES treatment for T404C, A407C, T412C, and I417C hRFCs were appreciably reversed in the presence of excess leucovorin, a hRFC substrate. Our results strongly suggest that residues within TMD 11 are likely critical structural and/or functional components of the putative hRFC transmembrane channel for anionic folate and anti-folate substrates.  相似文献   

12.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

13.
L P Encell  L A Loeb 《Biochemistry》1999,38(37):12097-12103
Human O(6)-alkylguanine-DNA alkyltransferase (MGMT) repairs potentially cytotoxic and mutagenic alkylation damage at the O(6)-position of guanine and the O(4)-position of thymine in DNA. We have used random sequence mutagenesis and functional complementation to obtain human MGMT mutants that are resistant to the MGMT inhibitor, O(6)-benzylguanine [Encell, L. P., Coates, M. M., and Loeb, L. A. (1998) Cancer Res. 58, 1013-1020]. Here we describe screening of O(6)-benzylguanine-resistant mutants for altered substrate specificity, i.e., for an increased level of utilization of O(4)-methylthymine (m(4)T) relative to that of O(6)-methylguanine (m(6)G). One mutant identified by the screen, 56-8, containing eight substitutions near the active site (C150Y, S152R, A154S, V155G, N157T, V164M, E166Q, and A170T), was purified and characterized kinetically. The second-order rate constant for repair of m(4)T by the mutant was up to 11.5-fold greater than that of WT MGMT, and the relative m(4)T specificity, k(m(4)T)/k(m(6)G), was as much as 75-fold greater. In competition experiments with both substrates present, the mutant was 277-fold more sensitive to inhibition by m(4)T than WT MGMT. This mutant, and others like it, could help elucidate the complex relationship between adduction at specific sites in DNA and the cytotoxicity and mutagenicity of alkylating agents.  相似文献   

14.
We have used alanine-scanning site-directed mutagenesis of the dimer contact region of starch phosphorylase from Corynebacterium callunae to explore the relationship between a protein conformational change induced by phosphate binding and the up to 500-fold kinetic stabilization of the functional quarternary structure of this enzyme when phosphate is present. Purified mutants (at positions Ser-224, Arg-226, Arg-234, and Arg-242) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and enzyme activity measurements at room temperature and under conditions of thermal denaturation. Difference FT-IR spectra of wild type and mutants in (2)H(2)O solvent revealed small changes in residual amide II band intensities at approximately 1,550 cm(-1), indicating that (1)H/(2)H exchange in the wild type is clearly perturbed by the mutations. Decreased (1)H/(2)H exchange in comparison to wild type suggests formation of a more compact protein structure in S224A, R234A, and R242A mutants and correlates with rates of irreversible thermal denaturation at 45 degrees C that are up to 10-fold smaller for the three mutants than the wild type. By contrast, the mutant R226A inactivates 2.5-fold faster at 45 degrees C and shows a higher (1)H/(2)H exchange than the wild type. Phosphate (20 mM) causes a greater change in FT-IR spectra of the wild type than in those of S224A and 234A mutants and leads to a 5-fold higher stabilization of the wild type than the two mutants. Therefore, structural effects of phosphate binding leading to kinetic stability of wild-type starch phosphorylase are partially complemented in the S224A and R234A mutants. Infrared spectroscopic measurements were used to compare thermal denaturations of the mutants and the wild type in the absence and presence of stabilizing oxyanion. The broad denaturation transition of unliganded wild type in the range 40-50 degrees C is reduced in the S224A and R234A mutants, and this reflects mainly a shift of the onset of denaturation to a 4-5 degrees C higher value.  相似文献   

15.
Poliovirus type 1 neurovirulence is difficult to analyze because of the 56 mutations which differentiate the neurovirulent Mahoney strain from the attenuated Sabin strain. We have isolated four neurovirulent mutants which differ from the temperature-sensitive parental Sabin 1 strain by only a few mutations, using selection for temperature resistance: mutant S(1)37C1 was isolated at 37.5 degrees C, S(1)38C5 was isolated at 38.5 degrees C, and S(1)39C6 and S(1)39C10 were isolated at 39.5 degrees C. All four mutants had a positive reproductive capacity at supraoptimal temperature (Rct+ phenotype). Mutant S(1)37C1 induced paralysis in two of four cynomolgus monkeys, and the three other mutants induced paralysis in four of four monkeys. The lesion score increased from the S(1)37C1 mutant to the S(1)39 mutants. To map the mutations associated with thermoresistance and neurovirulence, we sequenced all regions in which the Sabin 1 genome differs from the Mahoney genome. The S(1)37C1 mutant had one mutation in the 5' noncoding region and another in the 3' noncoding region. Mutant S(1)38C5 had these mutations plus another mutation in the 3D polymerase gene. The S(1)39 mutants had three additional mutations in the capsid protein region. The mutations were located at positions at which the Sabin 1 and Mahoney genomes differ, except for the mutation in the 5' noncoding region. The noncoding-region mutations apparently confer a low degree of neurovirulence. The 3D polymerase mutation, which distinguishes S(1)38C5 and S(1)39 mutants from S(1)37C1, is probably responsible for the high neurovirulence of S(1)38C5 and S(1)39 mutants. The capsid region mutations may contribute to the neurovirulence of the S(1)39 mutants, which was the highest among the mutants.  相似文献   

16.
Bartish G  Nygård O 《Biochimie》2008,90(5):736-748
Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.  相似文献   

17.
D P Goldenberg 《Biochemistry》1988,27(7):2481-2489
The kinetics of the disulfide-coupled unfolding-refolding transition of a mutant form of bovine pancreatic trypsin inhibitor (BPTI) lacking Cys-14 and -38 were measured and compared to previous results for the wild-type protein and other modified forms. The altered cysteines, which were changed to serine in the mutant protein, are normally paired in a disulfide in the native protein but from disulfides with Cys-5 in two-disulfide kinetic intermediates during folding. Although the mutant protein could fold efficiently, the kinetics of both folding and unfolding were altered, reflecting the roles of these cysteines in the two-disulfide intermediates with "wrong" disulfides. The intramolecular rate constant for the formation of the second disulfide of the native mutant protein was more than 10(3)-fold lower than that for the formation of a second disulfide during the refolding of the wild-type protein. The observed rate of unfolding of the mutant protein was also lower than that of the wild-type protein, demonstrating that the altered cysteines are involved in the intramolecular rearrangements that are the rate-determining step in the unfolding of the wild-type protein. These results confirm the previous conclusion [Creighton, T.E. (1977) J. Mol. Biol. 113, 275-293] that the energetically preferred pathway for folding and unfolding of BPTI includes intramolecular rearrangements of intermediates in which Cys-14 and -38 are paired in disulfides not present in the native protein. The present results are also consistent with other, less detailed, studies with similar mutants lacking Cys-14 and -38 [Marks, C.B., Naderi, H., Kosen, P.A., Kuntz, I.D., & Anderson, S. (1987) Science (Washington, D.C.) 235, 1370-1371].  相似文献   

18.
In two recent papers, we reported the effects of several point mutations on the thermodynamics of the thermal unfolding of the lysozyme of phage T4 as determined by differential scanning calorimetry. The mutants studied were R96H [Kitamura, S., & Sturtevant, J.M. (1989) Biochemistry 28, 3788-3792] and T157 replaced by A, E, I, L, N, R, and V [Connelly, P., Ghosaini, L., Hu, C.-Q., Kitamura, S., Tanaka, A., & Sturtevant, J.M. (1991) Biochemistry 30, 1887-1891]. Here we report the results of a similar study of the single mutations A82P, A93P, and G113A and the double mutation C54T:C97A. The three single mutants all show small apparent stabilization at pH 2.5 and 46.2 degrees C (the denaturational temperature of the wild-type protein), amounting to -0.5 +/- 0.4 kcal mol-1 in free energy, whereas the double mutant shows a weak apparent destabilization, +0.8 +/- 0.4 kcal mol-1. As in all our previous studies of mutant proteins, the enthalpy changes produced by these mutations are in general of much larger magnitude than the corresponding free energy changes and frequently of opposite sign.  相似文献   

19.
Recent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three-dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group. The structural data in this case did not allowed us to rationalize the effect of the mutation, since this hydrogen bond was predicted to be unaltered in the mutant. Since the mutation could shed light on the role of the oxyanion loop in the HSL family, experiments to elucidate at the mechanistic level the reasons of the observed drop in k (cat) were devised. In this work, the kinetic and structural features of the G84S mutant were investigated in more detail. The optimal temperature and pH for the activity of the mutated enzyme were found significantly changed (T = 65 degrees C and pH = 5.75). The catalytic constants K (M) and V(max) were found considerably altered in the mutant, with ninefold increased K (M) and 14-fold decreased V(max), at pH 5.75. At pH 7.1, the decrease in k (cat) was much more dramatic. The measurement of kinetic constants for some steps of the reaction mechanism and the resolution of the mutant 3D structure provided evidences that the observed effects were partly due to the steric hindrance of the S84-OH group towards the ester substrate and partly to its interference with the nucleophilic attack of a water molecule on the second tetrahedral intermediate.  相似文献   

20.
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in DeltaG can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号