首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined six molecular distances among four sites in the binary complex formed between troponin C (TnC) and troponin I (TnI) by fluorescence resonance energy transfer between donor and acceptor probes that were either an intrinsic fluorophore (Trp158 of TnI) or extrinsic probes attached to the sites. The three extrinsic probes were dansylaziridine (DNZ), N'-(iodoacetyl)-N'-(8-sulfo-1-naphthyl)ethylenediamine (IAEDANS) and 5-(iodoacetamido)eosin (IAE). The four fluorophores provided four donor-acceptor pairs: DNZ----IAE, Trp----IAEDANS, IAEDANS----IAE, and Trp----DNZ. They allowed determinations of separations between specific sites from measurements of energy transfer from (1) Met25 (DNZ) to Cys98 (IAE) in TnC, (2) Trp158 to Cys133 (IAEDANS) in TnI, (3) Cys98 (IAEDANS) of TnC to Cys133(IAE) of TnI, (4) Trp158 of TnI to Cys98(IAEDANS) of TnC, and (6) Met25(DNZ) of TnC to Cys133(IAE) of TnI. Distance (1) in TnC was little affected when the isolated protein was complexed with TnI, whereas distance (2) in TnI increased by 6A (29%) when TnI was incorporated into the binary complex. In the presence of EGTA, the six donor-acceptor separations (R) in the complex were in the range 28 to 57 A based on kappa 2 = 2/3. Mg2+ had only small effects on R, but Ca2+ induced substantial increases or decreases of R in five of the six distances. These changes were not accompanied by significant changes in the axial depolarization of the fluorophores. The results indicate global structural perturbations of regions of the two proteins in the complex by Ca2+ binding to the TnC, and suggest that large-scale movements of domains of troponin subunits may be the initial molecular events that occur in the transmission of the Ca2+ signal in the regulation of contraction by calcium.  相似文献   

2.
Z Li  J Gergely    T Tao 《Biophysical journal》2001,81(1):321-333
We used resonance energy transfer and site-directed photo-cross-linking to probe the Ca(2+)-dependent proximity relationships between residue 117 next to the C-terminus of the inhibitory region in rabbit skeletal troponin-I (TnI) and residues in troponin-C (TnC) and in actin. A mutant TnI that contains a single cysteine at position 117 (I117) was constructed, and the distance between TnI residue 117 and TnC residue 98 was measured with the following results: for both the binary TnC-TnI complex and the ternary troponin complex, this distance was 30 and 41 A in the presence and absence of Ca(2+), respectively. The distance between TnI residue 117 and Cys374 of actin was 48 and 41 A in the presence and absence of Ca(2+), respectively. Six additional distances from this TnI residue to cysteines in TnC mutants were measured and used to localize this residue with respect to the crystal structure of TnC. The results show that in the presence of Ca(2+) it is localized near the B and C helices of TnC's N-terminal domain. In the absence of Ca(2+) this residue moves away from this location by approximately 8 A. Photo-cross-linking experiments show that I117 labeled with 4-maleimidobenzophenone photo-cross-linked to TnC but not to actin in both the presence and absence of Ca(2+). Taken together these results provide independent experimental support for the proposal (Y. Luo, J. L. Wu, B. Li, K. Langsetmo, J. Gergely, and T. Tao, 2000, J. Mol. Biol. 296:899-910) that upon Ca(2+) removal the region comprising TnI residues 114-125 triggers the movements of residues 89-113 and 130-150 toward actin, but does not itself interact with actin.  相似文献   

3.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca2(+)-dependent regulation of vertebrate striated muscle contraction. Previous attempts to elucidate the molecular details of TnC-TnI interactions, mainly involving chemically modified proteins or fragments thereof, have led to the widely accepted idea that the "inhibitory region" (residues 96-116) of TnI binds to an alpha-helical segment of TnC comprising residues 89-100 in the nonregulatory, COOH-terminal domain. In an attempt to identify other possible physiologically important interactions between these proteins, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) was used to produce zero-length cross-links in the complex of rabbit skeletal muscle TnC and TnI. TnC was activated with EDC and N-hydroxysuccinimide (NHS) and then mixed with an equimolar amount of TnI [Grabarek, Z., & Gergely, J. (1988) Biophys. J. 53, 392a]. The resulting cross-linked TnCXI was cleaved with cyanogen bromide, trypsin, and Staphylococcus aureus V8 protease (SAP). Cross-linked peptides were purified by reverse-phase HPLC and characterized by sequence analysis. The results indicated that residues from the regulatory Ca2(+)-binding site II in the NH2-terminal domain of TnC (residues 46-78) formed cross-links with TnI segments spanning residues 92-167. The most highly cross-linked residues in TnI were Lys-105 and Lys-107, located in the inhibitory region. These results yield the first evidence for an interaction between the N-terminal domain of TnC and the inhibitory region of TnI.  相似文献   

4.
Interaction of bepridil with the cardiac troponin C/troponin I complex   总被引:1,自引:0,他引:1  
Mammalian cells are characterized by an endomembrane system. Nevertheless, some cells lose these membranes during their terminal differentiation, e.g. red blood cells and lens fiber cells of the eye. 15-Lipoxygenase is believed to be critical for this membrane degradation. Here we use cultivated rabbit reticulocytes in the presence or absence of a lipoxygenase inhibitor to provide further evidence for the importance of 15-lipoxygenase for the in vivo degradation of mitochondria. We find that inhibitor treatment retarded mitochondrial degradation, as shown by persistence of marker proteins and by direct visualization of mitochondria by electron microscopy.  相似文献   

5.
The inhibitory region of troponin I (TnI) plays a central regulatory role in the contraction and relaxation cycle of skeletal and cardiac muscle through its Ca(2+)-dependent interaction with actin. Detailed structural information on the interface between TnC and this region of TnI has been long in dispute. We have used fluorescence resonance energy transfer (FRET) to investigate the global conformation of the inhibitory region of a full-length TnI mutant from cardiac muscle (cTnI) in the unbound state and in reconstituted complexes with the other cardiac troponin subunits. The mutant contained a single tryptophan residue at the position 129 which was used as an energy transfer donor, and a single cysteine residue at the position 152 labeled with IAEDANS as energy acceptor. The sequence between Trp129 and Cys152 in cTnI brackets the inhibitory region (residues 130-149), and the distance between the two sites was found to be 19.4 A in free cTnI. This distance was insensitive to reconstitution of cTnI with cardiac troponin T (cTnT), cTnC, or cTnC and cTnT in the absence of bound regulatory Ca(2+) in cTnC. An increase of 9 A in the Trp129-Cys152 separation was observed upon saturation of the Ca(2+) regulatory site of cTnC in the complexes. This large increase suggests an extended conformation of the inhibitory region in the interface between cTnC and cTnI in holo cardiac troponin. This extended conformation is different from a recent model of the Ca(2+)-saturated skeletal TnI-TnC complex in which the inhibitory region is modeled as a beta-turn. The observed Ca(2+)-induced conformational change may be a switch mechanism by which movement of the regulatory region of cTnI to the exposed hydrophobic patch of the open regulatory N-domain of cTnC pulls the inhibitory region away from actin upon Ca(2+) activation in cardiac muscle.  相似文献   

6.
We have quantitated the interactions of two rabbit skeletal troponin C fragments with troponin I and the troponin I inhibitory peptide. The calcium binding properties of the fragments and the ability of the fragments to exert control in the regulated actomyosin ATPase assay have also been studied. The N- and C-terminal divalent metal binding domains of rabbit skeletal troponin C, residues 1-97 and residues 98-159, respectively, were prepared by specific cleavage at cysteine-98 and separation by gel exclusion chromatography. Both of the troponin C fragments bind calcium. The calcium affinity of the weak sites within the N-terminal fragment is about an order of magnitude greater than is reported for these sites in troponin C, suggesting interaction between the calcium-saturated strong sites and the weak sites. Stoichiometric binding (1:1) of the troponin I inhibitory peptide to each fragment and to troponin C increased the calcium affinities of the fragments and troponin C. Complex formation was detected by fluorescence quenching or enhancement using dansyl-labeled troponin C (and fragments) or tryptophan-labeled troponin I inhibitory peptide. The troponin C fragments bind to troponin I with 1:1 stoichiometry and approximately equal affinities (1.6 x 10(6) M-1) which are decreased 4-fold in the presence of magnesium versus calcium. These calcium effects are much smaller than is observed for troponin C. The summed free energies for the binding of the troponin C fragments to troponin I are much larger than the free energy of binding troponin C. This suggests a large positive interaction free energy for troponin C binding to troponin I relative to the fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We used frequency domain measurements of fluorescence resonance energy transfer to recover the distribution of distances between Met 25 and Cys 98 in rabbit skeletal troponin C. These residues were labeled with dansylaziridine as energy donor and 5-(iodoacetamido)eosin as acceptor and are located on the N- and C-terminal lobes of the two-domain protein, respectively. We developed a procedure to correct for the fraction of the sample that was incompletely labeled with the acceptor independent of chemical data. At pH 7.5 and in the presence of Mg2+, the mean distance was near 15 A with a half-width of the distribution of 15 A; when Mg2+ was replaced by Ca2+, the mean distance increased to 22 A with a decrease in the half-width by 4 A. Similar but less pronounced differences in the mean distance and half-width between samples containing Mg2+ and Ca2+ were also observed with troponin C complexed to troponin I. The results suggest that the conformation of troponin C is altered by Ca2+ binding to the Ca(2+)-specific sites and displacing bound Mg2+ at the Ca2+/Mg2+ sites. This alteration may play an important role in Ca2+ signaling in muscle. At pH 7.5, the anisotropy decays of the donor-labeled troponin C showed two components, with the long rotational correlation time (12 ns) reflecting the overall motion of the protein. When the pH was lowered from 7.5 to 5.2, the mean distribution distance of apotroponin C increased from 22 to 32 A and the half-width decreased by a factor of 2 from 13 to 7 A. The long correlation time of apotroponin C increased to 19 ns at the acidic pH. These results are discussed in terms of a model in which skeletal troponin C is a dimer at low pH and enable comparison of the solution conformation of the protein at neutral pH with a crystal structure obtained at pH 5.2. While the conformation of the monomeric unit of troponin C dimer at pH 5.2 is extended and consistent with the crystal structure, the conformation at neutral pH is likely more compact than the crystal structure predicts.  相似文献   

8.
Proton magnetic resonance spectroscopy has been used to study the cation (Mg2+, Ca2+)-dependent conformational states of the C-terminal domain of rabbit skeletal troponin C under a variety of solution conditions. Nuclear Overhauser data and paramagnetic probe observations provide definition of the configuration of this region of troponin C. Comparative study of homologous proteins identify common features of the tertiary structure relevant to the cation binding reaction. Complex formation with troponin I and the drug trifluoperazine is observed to adjust the solution conformation of the C-terminal domain of troponin C. The interactive conformational response to cation coordination and the binding of the drug and troponin I are discussed.  相似文献   

9.
Small-angle neutron scattering with contrast variation has been used to determine the shapes and dispositions of the three subunits of cardiac troponin and to study the influence of phosphorylation on the structure. Three contrast variation series were collected on three different isotopically labeled variants of the cTnC/cTnI/cTnT(198-298) complex, one of which contained deuterated and bisphosphorylated cTnI. Analysis of the scattering data shows cTnT(198-298) interacting with a single lobe of a somewhat compacted cTnC that sits at one end of an elongated rodlike cTnI, covering about one-third of its length. The cTnT(198-298) sits near the center of the long cTnI axis. The components undergo significant conformational changes and reorientations in response to protein kinase A phosphorylation of cTnI. The rodlike cTnI bends sharply at the end interacting with the cTnC/cTnT(198-298) component, which reorients so as to maintain its contacts with cTnI while undergoing only a relatively small change in shape.  相似文献   

10.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

11.
Pal D  Chakrabarti P 《Biopolymers》2000,53(6):467-475
The known protein structures have been analyzed to find out if there is any pattern in the type of residues used and their conformation at the two terminal positions of the polypeptide chains. While the N-terminal position is overwhelmingly occupied by Met (followed by Ala and Ser), the preference for the C-terminal is not as distinct, the residues with highest propensities being Lys, Arg, Gln, and Asn. Only one main-chain torsion angle, psi, can be defined for the N-terminal residue, which is found to be in the extended conformation due to a favorable electrostatic interaction between the charged amino group and the carbonyl oxygen atom. The distribution of the angle phi for the C-terminal residue, on the other hand, is not much different from that of the nonterminal residues. There are some differences in the distribution of the side-chain torsion angle chi1 of both the terminal residues from the general distribution. The terminal segments are generally flexible and there is a tendency for the more ordered residues to have lesser solvent exposure. About 40% of the terminal groups form a hydrogen bond with protein atoms--a slight preference is observed for the side-chain atoms (more than half of which belong to charged residues) over the main-chain ones. Although the terminal residues are not included in any regular secondary structure, the adjacent ones have a high preference to occur in the beta conformation. There is a higher chance of a beta-strand rather than an alpha-helix to start within the first 6 positions from the N-terminal end. It is suggested that the extended conformation observed for the N-terminal residue propagates along the chain leading to the formation of beta-strand. In the C-terminal end, on the other hand, as one moves upstream the alpha and beta structures are encountered in proportion similar to the average value for these structures in the database. The cleavage site of the zymogen structures has a conformation that can be retained by the N-terminal residue of the active enzyme.  相似文献   

12.
The N-terminal regulatory region of Troponin I, residues 1-40 (TnI 1-40, regulatory peptide) has been shown to have a biologically important function in the interactions of troponin I and troponin C. Truncated analogs corresponding to shorter versions of the N-terminal region (1-30, 1-28, 1-26) were synthesized by solid-phase methodology. Our results indicate that residues 1-30 of TnI comprises the minimum sequence to retain full biological activity as measured in the acto-S1-TM ATPase assay. Binding of the TnI N-terminal regulatory peptides (TnI 1-30 and the N-terminal regulatory peptide (residues 1-40) labeled with the photoprobe benzoylbenzoyl group, BBRp) were studied by gel electrophoresis and photochemical cross-linking experiments under various conditions. Fluorescence titrations of TnI 1-30 were carried out with TnC mutants that carry a single tryptophan fluorescence probe in either the N- or C-domain (F105W, F105W/C domain (88-162), F29W and F29W/N domain (1-90)) (Fig. 1). Low Kd values (Kd < 10(-7) M) were obtained for the interaction of F105W and F105W/C domain (88-162) with TnI 1-30. However, there was no observable change in fluorescence when the fluorescence probe was located at the N-domain of the TnC mutant (F29W and F29W/N domain (1-90)). These results show that the regulatory peptide binds strongly to the C-terminal domain of TnC.  相似文献   

13.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

14.
Interactions between troponin C and troponin I play a critical role in the regulation of skeletal muscle contraction and relaxation. We individually substituted 27 hydrophobic Phe, Ile, Leu, Val, and Met residues in the regulatory domain of the fluorescent troponin C(F29W) with polar Gln to examine the effects of these mutations on: (a) the calcium binding and dynamics of troponin C(F29W) complexed with the regulatory fragment of troponin I (troponin I(96-148)) and (b) the calcium sensitivity of force production. Troponin I(96-148) was an accurate mimic of intact troponin I for measuring the calcium dynamics of the troponin C(F29W)-troponin I complexes. The calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes varied approximately 243-fold, whereas the calcium association and dissociation rates varied approximately 38- and approximately 33-fold, respectively. Interestingly, the effect of the mutations on the calcium sensitivity of force development could be better predicted from the calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes than from that of the isolated troponin C(F29W) mutants. Most of the mutations did not dramatically affect the affinity of calcium-saturated troponin C(F29W) for troponin I(96-148). However, the Phe(26) to Gln and Ile(62) to Gln mutations led to >10-fold lower affinity of calcium-saturated troponin C(F29W) for troponin I(96-148), causing a drastic reduction in force recovery, even though these troponin C(F29W) mutants still bound to the thin filaments. In conclusion, elucidating the determinants of calcium binding and exchange with troponin C in the presence of troponin I provides a deeper understanding of how troponin C controls signal transduction.  相似文献   

15.
We have used resonance energy transfer to study the spatial relationship between Cys-98 of rabbit skeletal troponin C and Cys-133 of rabbit skeletal troponin I in the reconstituted ternary troponin complex. The donor was introduced by labeling either troponin C or troponin I with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, while the acceptor was introduced by labeling either protein with N-[4-(dimethylamino)phenyl-4'-azophenyl]maleimide. The extent of energy transfer was determined by measuring the quenching of the donor fluorescence decay. The results indicate first that the distance between these two sites is not fixed, suggesting that the protein regions involved possess considerable segmental flexibility. Second, the mean distance between the two sites is dependent on the metal-binding state of troponin C, being 39.1 A when none of the metal-binding sites are occupied, 41.0 A when Mg2+ ions bind at the high-affinity sites, and 35.5 A when Ca2+ ions bind to the low-affinity sites. Neither the magnitude of the distances nor the trend of change with metal ions differs greatly when the locations of the probes are switched or when steady-state fluorometry was used to determine the transfer efficiency. Since the low-affinity sites have been implicated as the physiological triggering sites, our findings suggest that one of the key events in Ca2+ activation of skeletal muscle contraction is a approximately 5-A decrease in the distance between the Cys-98 region of troponin C and the Cys-133 region of troponin I.  相似文献   

16.
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey skeletal troponin C (TnC), using the synthetic TnI analogue N alpha-acetyl[19FPhe106]TnI(104-115)amide. Dissociation constants of Kd = (3.7 +/- 3.1) x 10(-5) M for the apo interaction and Kd = (4.8 +/- 1.8) x 10(-5) M for the calcium(II)-saturated interaction were obtained using a 1:1 binding model of peptide to protein. The 19F NMR chemical shifts for the F-phenylalanine of the bound peptide are different from the apo- and calcium-saturated protein, indicating a different environment for the bound peptide. The possibility of 2:1 binding of the peptide to Ca(II)-saturated TnC was tested by calculating the fit of the experimental titration data to a series of theoretical binding curves in which the dissociation constants for the two hypothetical binding sites were varied. We obtained the best fit for 0.056 mM less than or equal to Kd1 less than or equal to 0.071 mM and 0.5 mM less than or equal to Kd2 less than or equal to 2.0 mM. These results allow the possibility of a second peptide binding site on calcium(II)-saturated TnC with an affinity 10- to 20-fold weaker than that of the first site.  相似文献   

17.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have determined intersite distances in the N-terminal domain of cardiac TnC (cTnC) by fluorescence resonance energy transfer measurements and found negligible increases in these distances when the single regulatory site is saturated with Ca(2+). However, in the presence of bound cardiac TnI (cTnI), activator Ca(2+) induces significant increases in the distances and a substantial opening of the N-domain. This open conformation within the cTnC.cTnI complex has properties favorable for the Ca(2+)-induced interaction with an additional segment of cTnI. Thus, the binding of cTnI to cTnC is a prerequisite to achieve a Ca(2+)-induced open N-domain similar to that previously observed in fsTnC with no bound fsTnI. This role of cardiac TnI has not been previously recognized. Our results also indicate that structural information derived from a single protein may not be sufficient for inference of a structure/function relationship.  相似文献   

18.
We used frequency-domain measurements of fluorescence resonance energy transfer to measure the distribution of distances between Trp-19 of melittin and a 1-dimethylamino-5-sulfonylnaphthalene (dansyl) residue on the N-terminal-alpha-amino group. Distance distributions were obtained for melittin free in solution and when complexed with calmodulin (CaM), troponin C (TnC), or palmitoyloleoyl-L-alpha-phosphatidylcholine (POPC) vesicles. A wide range of donor (Trp-19)-to-acceptor (dansyl) distances was found for free melittin, which is consistent with that expected for the random coil state, characterized by a Gaussian width (full width at half maxima) of 28.2 A. In contrast, narrow distance distributions were found for melittin complexed with CaM, 8.2 A, or with POPC vesicles, 4.9 A. A somewhat wider distribution was found for the melittin complex with TnC, 12.8 A, suggesting the presence of heterogeneity in the mode of binding between melittin and TnC. For all the complexes the mean Trp-19 to dansyl distance was near 20 A. This value is somewhat smaller than expected for the free alpha-helical state of melittin, suggesting that binding with CaM or TnC results in a modest decrease in the length of the melittin molecule.  相似文献   

19.
In vertebrate skeletal muscle, contraction is initiated by the elevation of the intracellular Ca2+ concentration. The binding of Ca2+ to TnC induces a series of conformational changes which ultimately release the inhibition of the actomyosin ATPase activity by Tnl. In this study we have characterized the dynamic behavior of TnC and Tnl in solution, as well as in reconstituted fibers, using EPR and ST-EPR spectroscopy. Cys98 of TnC and Cys133 of Tnl were specifically labeled with malemide spin label (MSL) and indane dione nitroxide spin label (InVSL). In solution, the labeled TnC and Tnl exhibited fast nanosecond motion. MSL-TnC is sensitive to cation binding to the high affinity sites (τr increases from 1.5 to 3.7 ns), InVSL-TnC s sensitive to the replacement of Mg2+ by Ca2+ at these sites (τr increase from 1.7 to 6 ns). Upon reconstitution into fibers, the nanosecond mobility is reduced by interactions with other proteins. TnC and Tnl both exhibited microsecond anisotropic motion in fibers similar to that of the actin monomers within the filament. The microsecond motion of TnC was found to be modulated by the binding of Ca2+ and by cross-bridge attachment, but this was not the case for the global mobility of Tnl. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
J Lan  S Albaugh  R F Steiner 《Biochemistry》1989,28(18):7380-7385
Fluorescent probes have been used to study the interaction of troponin I and its inhibitory peptide TnIp with troponin C, calmodulin, and the proteolytic fragments of calmodulin. The probes used included the noncovalently bound ligand TNS and the covalently attached labels dansyl and AEDANS. The fluorescence intensity of TNS bound to troponin C, calmodulin, or the calmodulin fragments was greatly enhanced by the presence of TnIp. This effect was used to estimate the corresponding binding constants. It was found that TnIp is bound by the C-terminal half-molecule of calmodulin, TR2C, with an affinity comparable to that of intact calmodulin or troponin C, while the binding affinity of the N-terminal half-molecule, TR1C, was an order of magnitude less, suggesting that the TnIp-containing portion of troponin I combines with the C-terminal half of calmodulin or troponin C. The fluorescence properties of an AEDANS group linked to Cys-98 of troponin C were modified by interaction with troponin I or TnIp. The fluorescence properties of the same group linked to Cys-27 of wheat germ calmodulin were affected by TnI, but not TnIp. TnI had a small effect upon the fluorescence of a dansyl group linked to Met-25 of troponin C. TnIp also inhibited the tryptic hydrolysis of the midpoint of the central connecting strand of calmodulin and troponin C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号