首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxylation of vitamin K-dependent (VKD) proteins is required for their activity and depends on reduced vitamin K generated by vitamin K oxidoreductase (VKOR) and a redox protein that regenerates VKOR activity. VKD protein carboxylation is inefficient in mammalian cells, and to understand why carboxylation becomes saturated, we developed an approach that directly measures the extent of intracellular VKD protein carboxylation. Analysis of factor IX (fIX)-expressing BHK cells indicated that slow egress of fIX from the endoplasmic reticulum and preferential secretion of the carboxylated form contribute to secreted fIX being more fully carboxylated. The analysis also revealed the first reported in vivo VKD protein turnover, which was 14-fold faster than that which occurs in vitro, suggesting facilitation of this process in vivo. r-VKORC1 expression increased the rate of fIX carboxylation and the extent of secreted carboxylated fIX approximately 2-fold, which shows that carboxylation is the rate-limiting step in fIX turnover and which was surprising because turnover in vitro is limited by release of carboxylated fIX. Interestingly, the increases were significantly smaller than the amount of VKOR overexpression (15-fold). However, when cell extracts were tested in single-turnover experiments in vitro, where redox protein is functionally substituted with dithiothreitol, VKOR overexpression increased the fIX carboxylation rate 14-fold, showing r-VKORC1 is functional for supporting fIX carboxylation. These data indicate that the effect of VKOR overexpression is limited in vivo, possibly because a carboxylation component like the redox protein becomes saturated or because another step is now rate-limiting. The studies illustrate the complexity of carboxylation and potential importance of component stoichiometry to overall efficiency.  相似文献   

2.
The vitamin K-dependent (VKD) carboxylase binds VKD proteins via their propeptide and converts Glu's to gamma-carboxylated Glu's, or Gla's, in the Gla domain. Multiple carboxylation is required for activity, which could be achieved if the carboxylase is processive. In the only previous study to test for this capability, an indirect assay was used which suggested processivity; however, the efficiency was poor and raised questions regarding how full carboxylation is accomplished. To unequivocally determine if the carboxylase is processive and if it can account for comprehensive carboxylation in vivo, as well as to elucidate the enzyme mechanism, we developed a direct test for processivity. The in vitro carboxylation of a complex containing carboxylase and full-length factor IX (fIX) was challenged with an excess amount of a distinguishable fIX variant. Remarkably, carboxylation of fIX in the complex was completely unaffected by the challenge protein, and comprehensive carboxylation was achieved, showing conclusively that the carboxylase is processive and highly efficient. These studies also showed that carboxylation of individual fIX/carboxylase complexes was nonsynchronous and implicated a driving force for the reaction which requires the carboxylase to distinguish Glu's from Gla's. We found that the Gla domain is tightly associated with the carboxylase during carboxylation, blocking the access of a small peptide substrate (EEL). The studies describe the first analysis of preformed complexes, and the rate for full-length, native fIX in the complex was equivalent to that of the substrate EEL. Thus, intramolecular movement within the Gla domain to reposition new Glu's for catalysis is as rapid as diffusion-limited positioning of a small substrate, and the Gla domain is not sterically constrained by the rest of the fIX molecule during carboxylation. The rate of carboxylation of fIX in the preformed complex was 24-fold higher than for fIX modified by free carboxylase, which supports carboxylase processivity and which indicates that binding and/or release is the rate-limiting step in protein carboxylation. These data indicate a model of tethered processivity, in which the VKD proteins remain bound to the carboxylase throughout the reaction via their propeptide, while the Gla domain undergoes intramolecular movement to reposition new Glu's for catalysis to ultimately achieve comprehensive carboxylation.  相似文献   

3.
The vitamin K-dependent (VKD) carboxylase converts clusters of Glu residues to gamma-carboxylated Glu residues (Glas) in VKD proteins, which is required for their activity. VKD precursors are targeted to the carboxylase by their carboxylase recognition site, which in most cases is a propeptide. We have identified a second tethering site for carboxylase and VKD proteins that is required for carboxylase activity, called the vitamin K-dependent protein site of interaction (VKS). Several VKD proteins specifically bound an immobilized peptide comprising amino acids 343-355 of the human carboxylase (CVYKRSRGKSGQK) but not a scrambled peptide containing the same residues in a different order. Association with the 343-355 peptide was independent of propeptide binding, because the VKD proteins lacked the propeptide and because the 343-355 peptide did not disrupt association of a propeptide factor IX-carboxylase complex. Analysis with peptides that overlapped amino acids 343-355 indicated that the 343-345 CVY residues were necessary but not sufficient for prothrombin binding. Ionic interactions were also suggested because peptide-VKD protein binding could be disrupted by changes in ionic strength or pH. Mutagenesis of Cys(343) to Ser and Tyr(345) to Phe resulted in 7-11-fold decreases in vitamin K epoxidation and peptide (EEL) substrate and carboxylase carboxylation, and kinetic analysis showed 5-6-fold increases in K(m) values for the Glu substrate. These results suggest that Cys(343) and Tyr(345) are near the catalytic center and affect the active site conformation required for correct positioning of the Glu substrate. The 343-355 VKS peptide had a higher affinity for carboxylated prothrombin (K(d) = 5 microm) than uncarboxylated prothrombin (K(d) = 60 microm), and the basic VKS region may also facilitate exiting of the Gla product from the catalytic center by ionic attraction. Tethering of VKD proteins to the carboxylase via the propeptide-binding site and the VKS region has important implications for the mechanism of VKD protein carboxylation, and a model is proposed for how the carboxylase VKS region may be required for efficient and processive VKD protein carboxylation.  相似文献   

4.
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre–propeptide sequences. The propeptide is connected to γ‐carboxylase enzyme through the γ‐carboxylase recognition site for the direct γ‐carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ‐carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ‐carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT‐hFIX‐M14 expression cassette, containing cDNA of hFIX with substituted ?14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4‐fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD‐14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ‐carboxylated hFIX species via barium citrate adsorption demonstrated 2‐fold enhanced recovery in the S2‐expressing hFIXD‐14A relative to that expressed native hFIX. These results show that changing ?14 residues leads to a decrease in the binding affinity to substrate, increase in γ‐carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515–520, 2018  相似文献   

5.
Propeptides of the vitamin K-dependent proteins bind to an exosite on gamma-glutamyl carboxylase; while they are bound, multiple glutamic acids in the gamma-carboxyglutamic acid (Gla) domain are carboxylated. The role of the propeptides has been studied extensively; however, the role of the Gla domain in substrate binding is less well understood. We used kinetic and fluorescence techniques to investigate the interactions of the carboxylase with a substrate containing the propeptide and Gla domain of factor IX (FIXproGla41). In addition, we characterized the effect of the Gla domain and carboxylation on propeptide and substrate binding. For the propeptide of factor IX (proFIX18), FIXproGla41, and carboxylated FIXproGla41, the Kd values were 50, 2.5, and 19.7 nM and the koff values were 273 x 10(-5), 9 x 10(-5), and 37 x 10(-5) s(-1), respectively. The koff of proFIX18 is reduced 3-fold by FLEEL and 9-fold by the Gla domain (residues 1-46) of FIX. The pre-steady state rate constants for carboxylation of FIXproGla41 was 0.02 s(-1) in enzyme excess and 0.016 s(-1) in substrate excess. The steady state rate in substrate excess is 4.5 x 10(-4) s(-1). These results demonstrate the following. 1) The pre-steady state carboxylation rate constant of FIXproGla41 is significantly slower than that of FLEEL. 2) The Gla domain plays an allosteric role in substrate-enzyme interactions. 3) Carboxylation reduces the allosteric effect. 4) The similarity between the steady state carboxylation rate constant and product dissociation rate constant suggests that product release is rate-limiting. 5) The increased dissociation rate after carboxylation contributes to the release of product.  相似文献   

6.
Leptospirosis is an emerging infectious disease whose pathology includes a hemorrhagic response, and sequencing of the Leptospira interrogans genome revealed an ortholog of the vitamin K-dependent (VKD) carboxylase as one of several hemostatic proteins present in the bacterium. Until now, the VKD carboxylase was known to be present only in the animal kingdom (i.e. metazoans that include mammals, fish, snails, and insects), and this restricted distribution and high sequence similarity between metazoan and Leptospira orthologs strongly suggests that Leptospira acquired the VKD carboxylase by horizontal gene transfer. In metazoans, the VKD carboxylase is bifunctional, acting as an epoxidase that oxygenates vitamin K to a strong base and a carboxylase that uses the base to carboxylate Glu residues in VKD proteins, rendering them active in hemostasis and other physiologies. In contrast, the Leptospira ortholog showed epoxidase but not detectable carboxylase activity and divergence in a region of identity in all known metazoan VKD carboxylases that is important to Glu interaction. Furthermore, although the mammalian carboxylase is regulated so that vitamin K epoxidation does not occur unless Glu substrate is present, the Leptospira VKD epoxidase showed unfettered epoxidation in the absence of Glu substrate. Finally, human VKD protein orthologs were not detected in the L. interrogans genome. The combined data, then, suggest that Leptospira exapted the metazoan VKD carboxylase for some use other than VKD protein carboxylation, such as using the strong vitamin K base to drive a new reaction or to promote oxidative damage or depleting vitamin K to indirectly inhibit host VKD protein carboxylation.  相似文献   

7.
Rishavy MA  Berkner KL 《Biochemistry》2008,47(37):9836-9846
Vitamin K-dependent (VKD) proteins become activated by the VKD carboxylase, which converts Glu's to carboxylated Glu's (Gla's) in their Gla domains. The carboxylase uses vitamin K epoxidation to drive Glu carboxylation, and the two half-reactions are coupled in 1:1 stoichiometry by an unknown mechanism. We now report the first identification of a residue, His160, required for coupling. A H160A mutant showed wild-type levels of epoxidation but substantially less carboxylation. Monitoring proton abstraction using a peptide with Glu tritiated at the gamma-carbon position revealed that poor coupling was due to impaired carbanion formation. H160A showed a 10-fold lower ratio of tritium release to vitamin K epoxidation than wild-type enzyme (i.e., 0.12 versus 1.14, respectively), which could fully account for the fold decrease in coupling efficiency. The Ala substitution in His160 did not affect the K m for vitamin K and caused only a 2-fold increase in the K m for Glu and 2-fold decrease in the activation of vitamin K epoxidation by Glu. The H160A K m for CO 2 was 5-fold higher than the wild-type enzyme. However, the k cat for H160A carboxylation was 8-9-fold lower than the wild-type enzyme with all three substrates (i.e., Glu, CO 2, and vitamin K), suggesting a catalytic role for His160 in carbanion formation. We propose that His160 facilitates the formation of the transition state for carbanion formation. His160 is highly conserved in metazoan VKD carboxylases but not in some bacterial orthologues (acquired by horizontal gene transfer), which has implications for how bacteria have adapted the carboxylase for novel functions.  相似文献   

8.
A gamma-carboxylation recognition site on the propeptide of the vitamin K-dependent blood coagulation proteins directs the carboxylation of glutamic acid residues by binding to the vitamin K-dependent carboxylase. To determine residues that define this site, we evaluated the effect of mutation of certain residues in the prothrombin propeptide on the extent of carboxylation. The prothrombin cDNA modified by site-specific mutagenesis was expressed in Chinese hamster ovary cells using a system that yields functional fully carboxylated prothrombin. The cell supernatants containing recombinant prothrombin were evaluated for the extent of gamma-carboxylation by immunoassay. Conformation-specific anti-prothrombin:Ca(II)-specific antibodies measure native completely carboxylated prothrombin; anti-prothrombin:total antibodies measure all forms of prothrombin, regardless of gamma-carboxyglutamic acid content. Mutation of His-18 to Gly, Val-17 to Ser, Leu-15 to Gly or Asp, or Ala-10 to Asp was associated with a partial (30-65%) inhibition of gamma-carboxylation. Mutation of Ala-14 to Ser or Ser-8 to Val did not inhibit gamma-carboxylation. From this and earlier work, residues whose mutation leads to a significant impairment of carboxylation include His-18, Val-17, Phe-16, Leu-15, and Ala-10. Residues whose mutation does not alter the carboxylation recognition site include Ala-14, Ser-8, Arg-4, and Arg-1. To determine the size of the recognition site, the in vitro carboxylation of propeptide-containing synthetic peptides was compared. A 28-residue peptide, based upon residues -18 to +10 of prothrombin, and a 54-residue peptide, based upon residues -18 to +36 of prothrombin, were carboxylated by partially purified bovine carboxylase with similar Km values of 2-5 microM. These results indicate that the gamma-carboxyglutamic acid-rich region of prothrombin makes a minimal contribution to carboxylase binding. A molecular surface of about five amino acids located within the propeptide appears to define the carboxylation recognition site on the precursor forms of the vitamin K-dependent proteins.  相似文献   

9.
The vitamin K-dependent blood-clotting proteins contain a gamma-carboxylation recognition site in the propeptide, between the signal peptide and the mature protein, that directs gamma-carboxylation of specific glutamic acid residues. To develop a better substrate for the in vitro assay of the vitamin K-dependent gamma-carboxylase and to understand the substrate recognition requirements of the carboxylase, we prepared synthetic peptides based upon the structure of human proprothrombin. These peptides were employed as substrates for in vitro carboxylation using a partially purified form of the bovine liver carboxylase. A 28-residue peptide (HVFLAPQQARSLLQRVRRANTFLEEVRK), based on residues -18 to +10 in proprothrombin, includes the complete propeptide and the first 10 residues of acarboxyprothrombin. Carboxylation of this peptide is characterized by a Km of 3.6 microM. In contrast, FLEEL is carboxylated with a Km of about 2200 microM. A 10-residue peptide (ANTFLEEVRK), based on residues +1 to +10 in prothrombin, and a 20-residue peptide (ARSLLQRVRRANTFLEEVRK), based on residues -10 to +10 in proprothrombin, are also poor substrates for the carboxylase. Replacement of phenylalanine with alanine at residue 3 (equivalent to position -16 in proprothrombin) in the 28-residue peptide significantly alters the Km to 200 microM. A synthetic propeptide (HVFLAPQQARSLLQRVRRY), homologous to residues -18 to -1 in proprothrombin, inhibited carboxylation of the 28-residue peptide substrate with a Ki of 3.5 microM, but modestly stimulated the carboxylation of the 5- and 10-residue peptide substrates. These results indicate that an intact carboxylation recognition site is required for efficient in vitro carboxylation and that this site includes critical residues in region -18 to -11 of proprothrombin. The carboxylation recognition site in the propeptide binds directly to the carboxylase or to a closely associated protein.  相似文献   

10.
Synthetic peptides including the gamma-carboxylation recognition site and acidic amino acids were compared as substrates for vitamin K-dependent gamma-carboxylation by bovine liver carboxylase. The 28-residue proPT28 (proprothrombin -18 to +10) and proFIX28 (pro-Factor IX -18 to +10) were carboxylated with a Km of 3 microM. The Vmax of proPT28 was 2-3 times greater than that of proFIX28. An analog of proFIX28 that contained the prothrombin propeptide had a Vmax 2-3-fold greater than an analog of proPT28 that contained the Factor IX propeptide. proFIX28/RS-1, based upon Factor IX Cambridge, proFIX28/RQ-4, based upon Factor IX Oxford 3, and proFIX28 had equivalent Km and Vmax values. Analogs of proPT28 containing Ala6-Glu7 or Glu6-Ala7 were carboxylated at equivalent rates. A peptide containing Asp6-Asp7 was carboxylated at a rate of about 1% of that of Glu carboxylation. Carboxylation of peptides containing Asp6-Glu7 and Glu6-Asp7 yielded results identical with peptides containing Ala6-Glu7 and Glu6-Ala7. Carboxymethylcysteine was not carboxylated when substituted for Glu6 in a peptide containing Asp7. These results indicate that the prothrombin propeptide is more efficient in the carboxylation process than is the Factor IX propeptide, but that both propeptides direct carboxylation; the gamma-carboxylation recognition site does not include residues -4 and -1; aspartic acid and carboxymethylcysteine are poor substrates for the carboxylase, but aspartic acid does not inhibit the carboxylation of adjacent glutamic acids.  相似文献   

11.
The Drosophila γ-glutamyl carboxylase (dγC) has substrate recognition properties similar to that of the vertebrate γ-carboxylase (γC), and its carboxylated product yield, in vitro, was shown to be more than that obtained with the human enzyme. However, whether the Drosophila enzyme is able to γ-carboxylate the human vitamin K-dependent (VKD) proteins, such as the human coagulation factor IX (hFIX), as synthesized in cultured Drosophila cells was not known. To examine this possibility, the Drosophila Schnider (S2) cell line was transfected with a metallothionein promoter-regulated hFIX-expressing plasmid. After induction with copper ion, expression efficiency of the active hFIX was analyzed by performing enzyme-linked immunosorbent assey (ELISA) and coagulation test on the culture supernatant of the transfected S2 cells during 72 h of postinduction. In comparison with Chinese hamster ovary cell line, S2 cells showed higher (≈ 12-fold) expression level of the hFIX. The γ-carboxylation of the Drosophila-derived hFIX was confirmed by evaluation of the expressed protein, after being precipitated with barium citrate. The biological activity of the S2 cell-derived hFIX indicated the capability of S2 cells to fulfill the required γ-carboxylation of the expressed hFIX. Coexpression of the human γ-glutamyl carboxylases (hγC) was also shown to improve both expression and γ-carboxylation of the hFIX. This is the first in vivo data to describe the ability of the dγC to recognize the human-based propeptide as substrate, which is an essential step for production of biologically active γ-carboxylated VKD proteins.  相似文献   

12.
The vitamin K-dependent (VKD) carboxylase converts Glu's to carboxylated Glu's in VKD proteins to render them functional in a broad range of physiologies. The carboxylase uses vitamin K hydroquinone (KH(2)) epoxidation to drive Glu carboxylation, and one of its critical roles is to provide a catalytic base that deprotonates KH(2) to allow epoxidation. A long-standing model invoked Cys as the catalytic base but was ruled out by activity retention in a mutant where every Cys is substituted by Ala. Inhibitor analysis of the cysteine-less mutant suggested that the base is an activated amine [Rishavy et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13732-13737], and in the present study, we used an evolutionary approach to identify candidate amines, which revealed His160, His287, His381, and Lys218. When mutational analysis was performed using an expression system lacking endogenous carboxylase, the His to Ala mutants all showed full epoxidase activity but K218A activity was not detectable. The addition of exogenous amines restored K218A activity while having little effect on wild type carboxylase, and pH studies indicated that rescue was dependent upon the basic form of the amine. Importantly, Br?nsted analysis that measured the effect of amines with different pK(a) values showed that K218A activity rescue depended upon the basicity of the amine. The combined results provide strong evidence that Lys218 is the essential base that deprotonates KH(2) to initiate the reaction. The identification of this base is an important advance in defining the carboxylase active site and has implications regarding carboxylase membrane topology and the feedback mechanism by which the Glu substrate regulates KH(2) oxygenation.  相似文献   

13.
The vitamin K-dependent carboxylation of the exogenous pentapeptide, Phe-Leu-Glu-Glu-Ile, and endogenous liver microsomal protein was studied in solubilized rat liver microsomes. The MnCl2 stimulation of the vitamin K-dependent pentapeptide carboxylation rate, which is conducted at subsaturating concentrations of pentapeptide, is due to the cation's ability to lower the Km of the substrate. Although there are clear kinetic differences observed between the carboxylation rates for the pentapeptide and the endogenous protein substrates, several lines of evidence suggest that the same carboxylase system is responsible for both. These points of evidence are (i) the initial velocity of endogenous protein carboxylation is lowered in the presence of 3 mM pentapeptide; (ii) the presence of endogenous microsomal protein substrate causes an initial lag in pentapeptide carboxylation; and (iii) this initial lag phase is not observed when the total endogenous substrate pool is carboxylated by a preincubation reaction prior to the addition of pentapeptide.  相似文献   

14.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the posttranslational modification of select glutamate residues of its vitamin K-dependent substrates to gamma-carboxyglutamate. In this report, we describe a new fluorescence assay that is sensitive and specific for the propeptide binding site of active carboxylase. We employed the assay to make three important observations: (1) A tight binding fluorescein-labeled consensus propeptide can be used to quantify the active fraction of the enzyme. (2) The off-rate for a fluorescein-labeled factor IX propeptide was 3000-fold slower than the rate of carboxylation, a difference that may explain how carboxylase can carry out multiple carboxylations of a substrate during the same binding event. (3) We show evidence that substrate binding to the active site modifies the propeptide binding site of carboxylase. The significant (9-fold) differences in off-rates for the propeptide in the presence and absence of its co-substrates may represent a release mechanism for macromolecular substrates from the enzyme. Additionally, sedimentation velocity and equilibrium experiments indicate a monomeric association of enzyme with propeptide. Furthermore, the carboxylase preparation is monodisperse in the buffer used for our studies.  相似文献   

15.
Vitamin K dependent in vitro production of prothrombin   总被引:3,自引:0,他引:3  
J C Swanson  J W Suttie 《Biochemistry》1982,21(23):6011-6018
During prothrombin biosynthesis, glutamyl residues in prothrombin precursor proteins are carboxylated to gamma-carboxyglutamyl residues by a vitamin K dependent carboxylase. Calcium-dependent and calcium-independent rat prothrombin antibody subpopulations have been produced and utilized to study the liver microsomal precursors of prothrombin that accumulate when vitamin K action is blocked. A substantial portion of the precursor pool accumulating in the vitamin K deficient or warfarin-treated rat will react with a Ca2+-dependent antibody at high calcium concentration and appears to be partially carboxylated. During in vitro incubation in the presence of vitamin K, the fraction of the precursor pool which is tightly bound to the microsomal membrane appears to be the preferred substrate for the vitamin K dependent carboxylation. A small amount of completely carboxylated rather than a large amount of partially carboxylated products are produced during these incubations. Treatment with a Sepharose-bound prothrombin antibody demonstrated that about 20-25% of the total carboxylated microsomal protein precursor pool consists of prothrombin precursors. This treatment removes an equal amount of total carboxylase activity, and the enzyme is active in this carboxylase precursor-antibody complex.  相似文献   

16.
The γ-glutamyl carboxylase utilizes four substrates to catalyze carboxylation of certain glutamic acid residues in vitamin K-dependent proteins. How the enzyme brings the substrates together to promote catalysis is an important question in understanding the structure and function of this enzyme. The propeptide is the primary binding site of the vitamin K-dependent proteins to carboxylase. It is also an effector of carboxylase activity. We tested the hypothesis that binding of substrates causes changes to the carboxylase and in turn to the substrate-enzyme interactions. In addition we investigated how the sequences of the propeptides affected the substrate-enzyme interaction. To study these questions we employed fluorescently labeled propeptides to measure affinity for the carboxylase. We also measured the ability of several propeptides to increase carboxylase catalytic activity. Finally we determined the effect of substrates: vitamin K hydroquinone, the pentapeptide FLEEL, and NaHCO3, on the stability of the propeptide-carboxylase complexes. We found a wide variation in the propeptide affinities for carboxylase. In contrast, the propeptides tested had similar effects on carboxylase catalytic activity. FLEEL and vitamin K hydroquinone both stabilized the propeptide-carboxylase complex. The two together had a greater effect than either alone. We conclude that the effect of propeptide and substrates on carboxylase controls the order of substrate binding in such a way as to ensure efficient, specific carboxylation.  相似文献   

17.
Patients with mutation L394R in gamma-glutamyl carboxylase have a severe bleeding disorder because of decreased biological activities of all vitamin K-dependent coagulation proteins. Vitamin K administration partially corrects this deficiency. To characterize L394R, we purified recombinant mutant L394R and wild-type carboxylase expressed in baculovirus-infected insect cells. By kinetic studies, we analyzed the catalytic activity of mutant L394R and its binding to factor IX's propeptide and vitamin KH(2). Mutant L394R differs from its wild-type counterpart as follows: 1) 110-fold higher K(i) for Boc-mEEV, an active site-specific, competitive inhibitor of FLEEL; 2) 30-fold lower V(max)/K(m) toward the substrate FLEEL in the presence of the propeptide; 3) severely reduced activity toward FLEEL carboxylation in the absence of the propeptide; 4) 7-fold decreased affinity for the propeptide; 5) 9-fold higher K(m) for FIXproGla, a substrate containing the propeptide and the Gla domain of human factor IX; and 6) 5-fold higher K(m) for vitamin KH(2). The primary defect in mutant L394R appears to be in its glutamate-binding site. To a lesser degree, the propeptide and KH(2) binding properties are altered in the L394R mutant. Compared with its wild-type counterpart, the L394R mutant shows an augmented activation of FLEEL carboxylation by the propeptide.  相似文献   

18.
A liver microsomal enzyme catalyzes the vitamin K-dependent posttranslational carboxylation of specific glutamyl residues of a limited number of plasma proteins to gamma-carboxyglutamyl residues. The intracellular precursor forms of these proteins are known to contain a homologous basic amino acid-rich propeptide region between the signal peptide region and the amino terminus of the mature protein. This region of the precursor protein has been implicated as a possible recognition site for the carboxylase enzyme. A 20-residue peptide containing the octadecapropeptide of human clotting factor X has now been shown to strongly stimulate the activity of the enzyme toward a noncovalently linked substrate. This stimulatory effect is seen at less than micromolar concentrations and is accompanied by a decrease in the Km of the glutamic acid substrate. These observations raise the possibility that the catalytic activity of other enzymes involved in protein processing may be regulated by a portion of their normal substrates.  相似文献   

19.
Addition of pyridine nucleotides to a microsomal system which is commonly used to study the vitamin K-dependent microsomal carboxylase promoted carboxylation of unknown endogenous compounds. Upon gel filtration, the carboxylated products were found to be of lower molecular weight (MW range 180–650) than the peptide substrate of the vitamin K-dependent carboxylase. Synthesis of these products was not inhibited by vitamin K antagonists nor did pyridine nucleotides stimulate carboxylation of the peptide substrate for vitamin K-dependent carboxylation in the absence of vitamin K. Thus the reaction appears to be mediated by a different enzyme. Dialysis of the microsomal system removed this pyridine nucleotide-stimulated carboxylation and activated the vitamin K-dependent carboxylation and epoxidation reactions. These data point out a possible artifact in the routine study of this enzyme and suggest that dialysis should be carried out prior to studying these two vitamin K-dependent reactions.  相似文献   

20.
To identify the amino acid sequence of the precursor of the Gla-containing peptide, epsilon-TxIX, from the venom of the marine snail Conus textile, the cDNA encoding this peptide was cloned from a C. textile venom duct library. The cDNA of the precursor form of epsilon-TxIX encodes a 67 amino acid precursor peptide, including an N-terminal prepro-region, the mature peptide, and four residues posttranslationally cleaved from the C-terminus. To determine the role of the propeptide in gamma-carboxylation, peptides were designed and synthesized based on the propeptide sequence of the Gla-containing conotoxin epsilon-TxIX and used in assays with the vitamin K-dependent gamma-glutamyl carboxylase from C. textile venom ducts. The mature acarboxy peptide epsilon-TxIX was a high K(M) substrate for the gamma-carboxylase. Synthetic peptides based on the precursor epsilon-TxIX were low K(M) substrates (5 microM) if the peptides included at least 12 residues of propeptide sequence, from -12 to -1. Leucine-19, leucine-16, asparagine-13, leucine-12, leucine-8 and leucine-4 contribute to the interaction of the pro-conotoxin with carboxylase since their replacement by aspartic acid increased the K(M) of the substrate peptide. Although the Conus propeptide and the propeptides of the mammalian vitamin K-dependent proteins show no obvious sequence homology, synthetic peptides based upon the structure of pro-epsilon-TxIX were intermediate K(M) substrates for the bovine carboxylase. The propeptide of epsilon-TxIX contains significant alpha-helix, as estimated by measurement of the circular dichroism spectra, but the region of the propeptide that plays the dominant role in directing carboxylation does not contain evidence of helical structure. These results indicate that the gamma-carboxylation recognition site is defined by hydrophobic residues in the propeptide of this conotoxin precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号